11.2. 选择排序¶
「选择排序 Selection Sort」的工作原理非常直接:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。
设数组的长度为 \(n\) ,选择排序的算法流程如下:
- 初始状态下,所有元素未排序,即未排序(索引)区间为 \([0, n-1]\) 。
- 选取区间 \([0, n-1]\) 中的最小元素,将其与索引 \(0\) 处元素交换。完成后,数组前 1 个元素已排序。
- 选取区间 \([1, n-1]\) 中的最小元素,将其与索引 \(1\) 处元素交换。完成后,数组前 2 个元素已排序。
- 以此类推。经过 \(n - 1\) 轮选择与交换后,数组前 \(n - 1\) 个元素已排序。
- 仅剩的一个元素必定是最大元素,无需排序,因此数组排序完成。
在代码中,我们用 \(k\) 来记录未排序区间内的最小元素。
selection_sort.java
/* 选择排序 */
void selectionSort(int[] nums) {
int n = nums.length;
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.cpp
/* 选择排序 */
void selectionSort(vector<int> &nums) {
int n = nums.size();
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
swap(nums[i], nums[k]);
}
}
11.2.1. 算法特性¶
- 时间复杂度为 \(O(n^2)\) 、非自适应排序:外循环共 \(n - 1\) 轮,第一轮的未排序区间长度为 \(n\) ,最后一轮的未排序区间长度为 \(2\) ,即各轮外循环分别包含 \(n\) , \(n - 1\) , \(\cdots\) , \(2\) 轮内循环,求和为 \(\frac{(n - 1)(n + 2)}{2}\) 。
- 空间复杂度 \(O(1)\) 、原地排序:指针 \(i\) , \(j\) 使用常数大小的额外空间。
- 非稳定排序:在交换元素时,有可能将
nums[i]
交换至其相等元素的右边,导致两者的相对顺序发生改变。
Fig. 选择排序非稳定示例