跳转至

12.4   汉诺塔问题

在归并排序和构建二叉树中,我们都是将原问题分解为两个规模为原问题一半的子问题。然而对于汉诺塔问题,我们采用不同的分解策略。

Question

给定三根柱子,记为 ABC 。起始状态下,柱子 A 上套着 \(n\) 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 \(n\) 个圆盘移到柱子 C 上,并保持它们的原有顺序不变。在移动圆盘的过程中,需要遵守以下规则。

  1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入。
  2. 每次只能移动一个圆盘。
  3. 小圆盘必须时刻位于大圆盘之上。

汉诺塔问题示例

图 12-10   汉诺塔问题示例

我们将规模为 \(i\) 的汉诺塔问题记做 \(f(i)\) 。例如 \(f(3)\) 代表将 \(3\) 个圆盘从 A 移动至 C 的汉诺塔问题。

1.   考虑基本情况

如图 12-11 所示,对于问题 \(f(1)\) ,即当只有一个圆盘时,我们将它直接从 A 移动至 C 即可。

规模为 1 问题的解

hanota_f1_step2

图 12-11   规模为 1 问题的解

如图 12-12 所示,对于问题 \(f(2)\) ,即当有两个圆盘时,由于要时刻满足小圆盘在大圆盘之上,因此需要借助 B 来完成移动

  1. 先将上面的小圆盘从 A 移至 B
  2. 再将大圆盘从 A 移至 C
  3. 最后将小圆盘从 B 移至 C

规模为 2 问题的解

hanota_f2_step2

hanota_f2_step3

hanota_f2_step4

图 12-12   规模为 2 问题的解

解决问题 \(f(2)\) 的过程可总结为:将两个圆盘借助 BA 移至 C 。其中,C 称为目标柱、B 称为缓冲柱。

2.   子问题分解

对于问题 \(f(3)\) ,即当有三个圆盘时,情况变得稍微复杂了一些。

因为已知 \(f(1)\)\(f(2)\) 的解,所以我们可从分治角度思考,A 顶部的两个圆盘看做一个整体,执行图 12-13 所示的步骤。这样三个圆盘就被顺利地从 A 移动至 C 了。

  1. B 为目标柱、C 为缓冲柱,将两个圆盘从 A 移动至 B
  2. A 中剩余的一个圆盘从 A 直接移动至 C
  3. C 为目标柱、A 为缓冲柱,将两个圆盘从 B 移动至 C

规模为 3 问题的解

hanota_f3_step2

hanota_f3_step3

hanota_f3_step4

图 12-13   规模为 3 问题的解

本质上看,我们将问题 \(f(3)\) 划分为两个子问题 \(f(2)\) 和子问题 \(f(1)\) 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解是可以合并的。

至此,我们可总结出图 12-14 所示的汉诺塔问题的分治策略:将原问题 \(f(n)\) 划分为两个子问题 \(f(n-1)\) 和一个子问题 \(f(1)\) ,并按照以下顺序解决这三个子问题。

  1. \(n-1\) 个圆盘借助 CA 移至 B
  2. 将剩余 \(1\) 个圆盘从 A 直接移至 C
  3. \(n-1\) 个圆盘借助 AB 移至 C

对于这两个子问题 \(f(n-1)\)可以通过相同的方式进行递归划分,直至达到最小子问题 \(f(1)\) 。而 \(f(1)\) 的解是已知的,只需一次移动操作即可。

汉诺塔问题的分治策略

图 12-14   汉诺塔问题的分治策略

3.   代码实现

在代码中,我们声明一个递归函数 dfs(i, src, buf, tar) ,它的作用是将柱 src 顶部的 \(i\) 个圆盘借助缓冲柱 buf 移动至目标柱 tar

hanota.py
def move(src: list[int], tar: list[int]):
    """移动一个圆盘"""
    # 从 src 顶部拿出一个圆盘
    pan = src.pop()
    # 将圆盘放入 tar 顶部
    tar.append(pan)

def dfs(i: int, src: list[int], buf: list[int], tar: list[int]):
    """求解汉诺塔:问题 f(i)"""
    # 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1:
        move(src, tar)
        return
    # 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf)
    # 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar)
    # 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar)

def solve_hanota(A: list[int], B: list[int], C: list[int]):
    """求解汉诺塔"""
    n = len(A)
    # 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C)
hanota.cpp
/* 移动一个圆盘 */
void move(vector<int> &src, vector<int> &tar) {
    // 从 src 顶部拿出一个圆盘
    int pan = src.back();
    src.pop_back();
    // 将圆盘放入 tar 顶部
    tar.push_back(pan);
}

/* 求解汉诺塔:问题 f(i) */
void dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
void solveHanota(vector<int> &A, vector<int> &B, vector<int> &C) {
    int n = A.size();
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.java
/* 移动一个圆盘 */
void move(List<Integer> src, List<Integer> tar) {
    // 从 src 顶部拿出一个圆盘
    Integer pan = src.remove(src.size() - 1);
    // 将圆盘放入 tar 顶部
    tar.add(pan);
}

/* 求解汉诺塔:问题 f(i) */
void dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
void solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {
    int n = A.size();
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.cs
/* 移动一个圆盘 */
void move(List<int> src, List<int> tar) {
    // 从 src 顶部拿出一个圆盘
    int pan = src[^1];
    src.RemoveAt(src.Count - 1);
    // 将圆盘放入 tar 顶部
    tar.Add(pan);
}

/* 求解汉诺塔:问题 f(i) */
void dfs(int i, List<int> src, List<int> buf, List<int> tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
void solveHanota(List<int> A, List<int> B, List<int> C) {
    int n = A.Count;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.go
/* 移动一个圆盘 */
func move(src, tar *list.List) {
    // 从 src 顶部拿出一个圆盘
    pan := src.Back()
    // 将圆盘放入 tar 顶部
    tar.PushBack(pan.Value)
    // 移除 src 顶部圆盘
    src.Remove(pan)
}

/* 求解汉诺塔:问题 f(i) */
func dfsHanota(i int, src, buf, tar *list.List) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move(src, tar)
        return
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfsHanota(i-1, src, tar, buf)
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar)
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfsHanota(i-1, buf, src, tar)
}

/* 求解汉诺塔 */
func solveHanota(A, B, C *list.List) {
    n := A.Len()
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfsHanota(n, A, B, C)
}
hanota.swift
/* 移动一个圆盘 */
func move(src: inout [Int], tar: inout [Int]) {
    // 从 src 顶部拿出一个圆盘
    let pan = src.popLast()!
    // 将圆盘放入 tar 顶部
    tar.append(pan)
}

/* 求解汉诺塔:问题 f(i) */
func dfs(i: Int, src: inout [Int], buf: inout [Int], tar: inout [Int]) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move(src: &src, tar: &tar)
        return
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i: i - 1, src: &src, buf: &tar, tar: &buf)
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src: &src, tar: &tar)
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i: i - 1, src: &buf, buf: &src, tar: &tar)
}

/* 求解汉诺塔 */
func solveHanota(A: inout [Int], B: inout [Int], C: inout [Int]) {
    let n = A.count
    // 列表尾部是柱子顶部
    // 将 src 顶部 n 个圆盘借助 B 移到 C
    dfs(i: n, src: &A, buf: &B, tar: &C)
}
hanota.js
/* 移动一个圆盘 */
function move(src, tar) {
    // 从 src 顶部拿出一个圆盘
    const pan = src.pop();
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔:问题 f(i) */
function dfs(i, src, buf, tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i === 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
function solveHanota(A, B, C) {
    const n = A.length;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.ts
/* 移动一个圆盘 */
function move(src: number[], tar: number[]): void {
    // 从 src 顶部拿出一个圆盘
    const pan = src.pop();
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔:问题 f(i) */
function dfs(i: number, src: number[], buf: number[], tar: number[]): void {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i === 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
function solveHanota(A: number[], B: number[], C: number[]): void {
    const n = A.length;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.dart
/* 移动一个圆盘 */
void move(List<int> src, List<int> tar) {
  // 从 src 顶部拿出一个圆盘
  int pan = src.removeLast();
  // 将圆盘放入 tar 顶部
  tar.add(pan);
}

/* 求解汉诺塔:问题 f(i) */
void dfs(int i, List<int> src, List<int> buf, List<int> tar) {
  // 若 src 只剩下一个圆盘,则直接将其移到 tar
  if (i == 1) {
    move(src, tar);
    return;
  }
  // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
  dfs(i - 1, src, tar, buf);
  // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
  move(src, tar);
  // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
  dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
void solveHanota(List<int> A, List<int> B, List<int> C) {
  int n = A.length;
  // 将 A 顶部 n 个圆盘借助 B 移到 C
  dfs(n, A, B, C);
}
hanota.rs
/* 移动一个圆盘 */
fn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {
    // 从 src 顶部拿出一个圆盘
    let pan = src.remove(src.len() - 1);
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔:问题 f(i) */
fn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move_pan(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move_pan(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔 */
fn solve_hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {
    let n = A.len() as i32;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
hanota.c
[class]{}-[func]{move}

[class]{}-[func]{dfs}

[class]{}-[func]{solveHanota}
hanota.zig
[class]{}-[func]{move}

[class]{}-[func]{dfs}

[class]{}-[func]{solveHanota}

如图 12-15 所示,汉诺塔问题形成一个高度为 \(n\) 的递归树,每个节点代表一个子问题、对应一个开启的 dfs() 函数,因此时间复杂度为 \(O(2^n)\) ,空间复杂度为 \(O(n)\)

汉诺塔问题的递归树

图 12-15   汉诺塔问题的递归树

Quote

汉诺塔问题源自一种古老的传说故事。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 \(64\) 个大小不一的金圆盘。僧侣们不断地移动原盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。

然而,即使僧侣们每秒钟移动一次,总共需要大约 \(2^{64} \approx 1.84×10^{19}\) 秒,合约 \(5850\) 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。

欢迎在评论区留下你的见解、疑惑或建议