// File: time_complexity.go // Created Time: 2022-12-13 // Author: msk397 (machangxinq@gmail.com) package chapter_computational_complexity /* 常數階 */ func constant(n int) int { count := 0 size := 100000 for i := 0; i < size; i++ { count++ } return count } /* 線性階 */ func linear(n int) int { count := 0 for i := 0; i < n; i++ { count++ } return count } /* 線性階(走訪陣列) */ func arrayTraversal(nums []int) int { count := 0 // 迴圈次數與陣列長度成正比 for range nums { count++ } return count } /* 平方階 */ func quadratic(n int) int { count := 0 // 迴圈次數與資料大小 n 成平方關係 for i := 0; i < n; i++ { for j := 0; j < n; j++ { count++ } } return count } /* 平方階(泡沫排序) */ func bubbleSort(nums []int) int { count := 0 // 計數器 // 外迴圈:未排序區間為 [0, i] for i := len(nums) - 1; i > 0; i-- { // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端 for j := 0; j < i; j++ { if nums[j] > nums[j+1] { // 交換 nums[j] 與 nums[j + 1] tmp := nums[j] nums[j] = nums[j+1] nums[j+1] = tmp count += 3 // 元素交換包含 3 個單元操作 } } } return count } /* 指數階(迴圈實現)*/ func exponential(n int) int { count, base := 0, 1 // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1) for i := 0; i < n; i++ { for j := 0; j < base; j++ { count++ } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } /* 指數階(遞迴實現)*/ func expRecur(n int) int { if n == 1 { return 1 } return expRecur(n-1) + expRecur(n-1) + 1 } /* 對數階(迴圈實現)*/ func logarithmic(n int) int { count := 0 for n > 1 { n = n / 2 count++ } return count } /* 對數階(遞迴實現)*/ func logRecur(n int) int { if n <= 1 { return 0 } return logRecur(n/2) + 1 } /* 線性對數階 */ func linearLogRecur(n int) int { if n <= 1 { return 1 } count := linearLogRecur(n/2) + linearLogRecur(n/2) for i := 0; i < n; i++ { count++ } return count } /* 階乘階(遞迴實現) */ func factorialRecur(n int) int { if n == 0 { return 1 } count := 0 // 從 1 個分裂出 n 個 for i := 0; i < n; i++ { count += factorialRecur(n - 1) } return count }