--- comments: true --- # 8.1. 堆 「堆 Heap」是一种满足特定条件的完全二叉树,可分为两种类型: - 「大顶堆 Max Heap」,任意节点的值 $\geq$ 其子节点的值。 - 「小顶堆 Min Heap」,任意节点的值 $\leq$ 其子节点的值。 ![小顶堆与大顶堆](heap.assets/min_heap_and_max_heap.png)
Fig. 小顶堆与大顶堆
堆作为完全二叉树的一个特例,具有以下特性: - 最底层节点靠左填充,其他层的节点都被填满。 - 我们将二叉树的根节点称为「堆顶」,将底层最靠右的节点称为「堆底」。 - 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。 ## 8.1.1. 堆常用操作 需要指出的是,许多编程语言提供的是「优先队列 Priority Queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。 实际上,**堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列**。从使用角度来看,我们可以将「优先队列」和「堆」看作等价的数据结构。因此,本书对两者不做特别区分,统一使用「堆」来命名。 堆的常用操作见下表,方法名需要根据编程语言来确定。Fig. 堆的表示与存储
我们可以将索引映射公式封装成函数,方便后续使用。 === "Java" ```java title="my_heap.java" /* 获取左子节点索引 */ int left(int i) { return 2 * i + 1; } /* 获取右子节点索引 */ int right(int i) { return 2 * i + 2; } /* 获取父节点索引 */ int parent(int i) { return (i - 1) / 2; // 向下整除 } ``` === "C++" ```cpp title="my_heap.cpp" /* 获取左子节点索引 */ int left(int i) { return 2 * i + 1; } /* 获取右子节点索引 */ int right(int i) { return 2 * i + 2; } /* 获取父节点索引 */ int parent(int i) { return (i - 1) / 2; // 向下取整 } ``` === "Python" ```python title="my_heap.py" def left(self, i: int) -> int: """获取左子节点索引""" return 2 * i + 1 def right(self, i: int) -> int: """获取右子节点索引""" return 2 * i + 2 def parent(self, i: int) -> int: """获取父节点索引""" return (i - 1) // 2 # 向下整除 ``` === "Go" ```go title="my_heap.go" /* 获取左子节点索引 */ func (h *maxHeap) left(i int) int { return 2*i + 1 } /* 获取右子节点索引 */ func (h *maxHeap) right(i int) int { return 2*i + 2 } /* 获取父节点索引 */ func (h *maxHeap) parent(i int) int { // 向下整除 return (i - 1) / 2 } ``` === "JavaScript" ```javascript title="my_heap.js" /* 获取左子节点索引 */ #left(i) { return 2 * i + 1; } /* 获取右子节点索引 */ #right(i) { return 2 * i + 2; } /* 获取父节点索引 */ #parent(i) { return Math.floor((i - 1) / 2); // 向下整除 } ``` === "TypeScript" ```typescript title="my_heap.ts" /* 获取左子节点索引 */ left(i: number): number { return 2 * i + 1; } /* 获取右子节点索引 */ right(i: number): number { return 2 * i + 2; } /* 获取父节点索引 */ parent(i: number): number { return Math.floor((i - 1) / 2); // 向下整除 } ``` === "C" ```c title="my_heap.c" /* 获取左子节点索引 */ int left(maxHeap *h, int i) { return 2 * i + 1; } /* 获取右子节点索引 */ int right(maxHeap *h, int i) { return 2 * i + 2; } /* 获取父节点索引 */ int parent(maxHeap *h, int i) { return (i - 1) / 2; } ``` === "C#" ```csharp title="my_heap.cs" /* 获取左子节点索引 */ int left(int i) { return 2 * i + 1; } /* 获取右子节点索引 */ int right(int i) { return 2 * i + 2; } /* 获取父节点索引 */ int parent(int i) { return (i - 1) / 2; // 向下整除 } ``` === "Swift" ```swift title="my_heap.swift" /* 获取左子节点索引 */ func left(i: Int) -> Int { 2 * i + 1 } /* 获取右子节点索引 */ func right(i: Int) -> Int { 2 * i + 2 } /* 获取父节点索引 */ func parent(i: Int) -> Int { (i - 1) / 2 // 向下整除 } ``` === "Zig" ```zig title="my_heap.zig" // 获取左子节点索引 fn left(i: usize) usize { return 2 * i + 1; } // 获取右子节点索引 fn right(i: usize) usize { return 2 * i + 2; } // 获取父节点索引 fn parent(i: usize) usize { // return (i - 1) / 2; // 向下整除 return @divFloor(i - 1, 2); } ``` === "Dart" ```dart title="my_heap.dart" /* 获取左子节点索引 */ int _left(int i) { return 2 * i + 1; } /* 获取右子节点索引 */ int _right(int i) { return 2 * i + 2; } /* 获取父节点索引 */ int _parent(int i) { return (i - 1) ~/ 2; // 向下整除 } ``` ### 访问堆顶元素 堆顶元素即为二叉树的根节点,也就是列表的首个元素。 === "Java" ```java title="my_heap.java" /* 访问堆顶元素 */ int peek() { return maxHeap.get(0); } ``` === "C++" ```cpp title="my_heap.cpp" /* 访问堆顶元素 */ int peek() { return maxHeap[0]; } ``` === "Python" ```python title="my_heap.py" def peek(self) -> int: """访问堆顶元素""" return self.max_heap[0] ``` === "Go" ```go title="my_heap.go" /* 访问堆顶元素 */ func (h *maxHeap) peek() any { return h.data[0] } ``` === "JavaScript" ```javascript title="my_heap.js" /* 访问堆顶元素 */ peek() { return this.#maxHeap[0]; } ``` === "TypeScript" ```typescript title="my_heap.ts" /* 访问堆顶元素 */ peek(): number { return this.maxHeap[0]; } ``` === "C" ```c title="my_heap.c" /* 访问堆顶元素 */ int peek(maxHeap *h) { return h->data[0]; } ``` === "C#" ```csharp title="my_heap.cs" /* 访问堆顶元素 */ int peek() { return maxHeap[0]; } ``` === "Swift" ```swift title="my_heap.swift" /* 访问堆顶元素 */ func peek() -> Int { maxHeap[0] } ``` === "Zig" ```zig title="my_heap.zig" // 访问堆顶元素 fn peek(self: *Self) T { return self.max_heap.?.items[0]; } ``` === "Dart" ```dart title="my_heap.dart" /* 访问堆顶元素 */ int peek() { return _maxHeap[0]; } ``` ### 元素入堆 给定元素 `val` ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,**需要修复从插入节点到根节点的路径上的各个节点**,这个操作被称为「堆化 Heapify」。 考虑从入堆节点开始,**从底至顶执行堆化**。具体来说,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无需交换的节点时结束。 === "<1>" ![元素入堆步骤](heap.assets/heap_push_step1.png) === "<2>" ![heap_push_step2](heap.assets/heap_push_step2.png) === "<3>" ![heap_push_step3](heap.assets/heap_push_step3.png) === "<4>" ![heap_push_step4](heap.assets/heap_push_step4.png) === "<5>" ![heap_push_step5](heap.assets/heap_push_step5.png) === "<6>" ![heap_push_step6](heap.assets/heap_push_step6.png) === "<7>" ![heap_push_step7](heap.assets/heap_push_step7.png) === "<8>" ![heap_push_step8](heap.assets/heap_push_step8.png) === "<9>" ![heap_push_step9](heap.assets/heap_push_step9.png) 设节点总数为 $n$ ,则树的高度为 $O(\log n)$ 。由此可知,堆化操作的循环轮数最多为 $O(\log n)$ ,**元素入堆操作的时间复杂度为 $O(\log n)$** 。 === "Java" ```java title="my_heap.java" /* 元素入堆 */ void push(int val) { // 添加节点 maxHeap.add(val); // 从底至顶堆化 siftUp(size() - 1); } /* 从节点 i 开始,从底至顶堆化 */ void siftUp(int i) { while (true) { // 获取节点 i 的父节点 int p = parent(i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 || maxHeap.get(i) <= maxHeap.get(p)) break; // 交换两节点 swap(i, p); // 循环向上堆化 i = p; } } ``` === "C++" ```cpp title="my_heap.cpp" /* 元素入堆 */ void push(int val) { // 添加节点 maxHeap.push_back(val); // 从底至顶堆化 siftUp(size() - 1); } /* 从节点 i 开始,从底至顶堆化 */ void siftUp(int i) { while (true) { // 获取节点 i 的父节点 int p = parent(i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 || maxHeap[i] <= maxHeap[p]) break; // 交换两节点 swap(maxHeap[i], maxHeap[p]); // 循环向上堆化 i = p; } } ``` === "Python" ```python title="my_heap.py" def push(self, val: int): """元素入堆""" # 添加节点 self.max_heap.append(val) # 从底至顶堆化 self.sift_up(self.size() - 1) def sift_up(self, i: int): """从节点 i 开始,从底至顶堆化""" while True: # 获取节点 i 的父节点 p = self.parent(i) # 当“越过根节点”或“节点无需修复”时,结束堆化 if p < 0 or self.max_heap[i] <= self.max_heap[p]: break # 交换两节点 self.swap(i, p) # 循环向上堆化 i = p ``` === "Go" ```go title="my_heap.go" /* 元素入堆 */ func (h *maxHeap) push(val any) { // 添加节点 h.data = append(h.data, val) // 从底至顶堆化 h.siftUp(len(h.data) - 1) } /* 从节点 i 开始,从底至顶堆化 */ func (h *maxHeap) siftUp(i int) { for true { // 获取节点 i 的父节点 p := h.parent(i) // 当“越过根节点”或“节点无需修复”时,结束堆化 if p < 0 || h.data[i].(int) <= h.data[p].(int) { break } // 交换两节点 h.swap(i, p) // 循环向上堆化 i = p } } ``` === "JavaScript" ```javascript title="my_heap.js" /* 元素入堆 */ push(val) { // 添加节点 this.#maxHeap.push(val); // 从底至顶堆化 this.#siftUp(this.size() - 1); } /* 从节点 i 开始,从底至顶堆化 */ #siftUp(i) { while (true) { // 获取节点 i 的父节点 const p = this.#parent(i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break; // 交换两节点 this.#swap(i, p); // 循环向上堆化 i = p; } } ``` === "TypeScript" ```typescript title="my_heap.ts" /* 元素入堆 */ push(val: number): void { // 添加节点 this.maxHeap.push(val); // 从底至顶堆化 this.siftUp(this.size() - 1); } /* 从节点 i 开始,从底至顶堆化 */ siftUp(i: number): void { while (true) { // 获取节点 i 的父节点 const p = this.parent(i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break; // 交换两节点 this.swap(i, p); // 循环向上堆化 i = p; } } ``` === "C" ```c title="my_heap.c" /* 元素入堆 */ void push(maxHeap *h, int val) { // 默认情况下,不应该添加这么多节点 if (h->size == MAX_SIZE) { printf("heap is full!"); return; } // 添加节点 h->data[h->size] = val; h->size++; // 从底至顶堆化 siftUp(h, h->size - 1); } /* 从节点 i 开始,从底至顶堆化 */ void siftUp(maxHeap *h, int i) { while (true) { // 获取节点 i 的父节点 int p = parent(h, i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 || h->data[i] <= h->data[p]) { break; } // 交换两节点 swap(h, i, p); // 循环向上堆化 i = p; } } ``` === "C#" ```csharp title="my_heap.cs" /* 元素入堆 */ void push(int val) { // 添加节点 maxHeap.Add(val); // 从底至顶堆化 siftUp(size() - 1); } /* 从节点 i 开始,从底至顶堆化 */ void siftUp(int i) { while (true) { // 获取节点 i 的父节点 int p = parent(i); // 若“越过根节点”或“节点无需修复”,则结束堆化 if (p < 0 || maxHeap[i] <= maxHeap[p]) break; // 交换两节点 swap(i, p); // 循环向上堆化 i = p; } } ``` === "Swift" ```swift title="my_heap.swift" /* 元素入堆 */ func push(val: Int) { // 添加节点 maxHeap.append(val) // 从底至顶堆化 siftUp(i: size() - 1) } /* 从节点 i 开始,从底至顶堆化 */ func siftUp(i: Int) { var i = i while true { // 获取节点 i 的父节点 let p = parent(i: i) // 当“越过根节点”或“节点无需修复”时,结束堆化 if p < 0 || maxHeap[i] <= maxHeap[p] { break } // 交换两节点 swap(i: i, j: p) // 循环向上堆化 i = p } } ``` === "Zig" ```zig title="my_heap.zig" // 元素入堆 fn push(self: *Self, val: T) !void { // 添加节点 try self.max_heap.?.append(val); // 从底至顶堆化 try self.siftUp(self.size() - 1); } // 从节点 i 开始,从底至顶堆化 fn siftUp(self: *Self, i_: usize) !void { var i = i_; while (true) { // 获取节点 i 的父节点 var p = parent(i); // 当“越过根节点”或“节点无需修复”时,结束堆化 if (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break; // 交换两节点 try self.swap(i, p); // 循环向上堆化 i = p; } } ``` === "Dart" ```dart title="my_heap.dart" /* 元素入堆 */ void push(int val) { // 添加节点 _maxHeap.add(val); // 从底至顶堆化 _siftUp(size() - 1); } [class]{MaxHeap}-[func]{siftUp} ``` ### 堆顶元素出堆 堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采取以下操作步骤: 1. 交换堆顶元素与堆底元素(即交换根节点与最右叶节点)。 2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素)。 3. 从根节点开始,**从顶至底执行堆化**。 顾名思义,**从顶至底堆化的操作方向与从底至顶堆化相反**,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换;然后循环执行此操作,直到越过叶节点或遇到无需交换的节点时结束。 === "<1>" ![堆顶元素出堆步骤](heap.assets/heap_pop_step1.png) === "<2>" ![heap_pop_step2](heap.assets/heap_pop_step2.png) === "<3>" ![heap_pop_step3](heap.assets/heap_pop_step3.png) === "<4>" ![heap_pop_step4](heap.assets/heap_pop_step4.png) === "<5>" ![heap_pop_step5](heap.assets/heap_pop_step5.png) === "<6>" ![heap_pop_step6](heap.assets/heap_pop_step6.png) === "<7>" ![heap_pop_step7](heap.assets/heap_pop_step7.png) === "<8>" ![heap_pop_step8](heap.assets/heap_pop_step8.png) === "<9>" ![heap_pop_step9](heap.assets/heap_pop_step9.png) === "<10>" ![heap_pop_step10](heap.assets/heap_pop_step10.png) 与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 $O(\log n)$ 。 === "Java" ```java title="my_heap.java" /* 元素出堆 */ int pop() { // 判空处理 if (isEmpty()) throw new IndexOutOfBoundsException(); // 交换根节点与最右叶节点(即交换首元素与尾元素) swap(0, size() - 1); // 删除节点 int val = maxHeap.remove(size() - 1); // 从顶至底堆化 siftDown(0); // 返回堆顶元素 return val; } /* 从节点 i 开始,从顶至底堆化 */ void siftDown(int i) { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma int l = left(i), r = right(i), ma = i; if (l < size() && maxHeap.get(l) > maxHeap.get(ma)) ma = l; if (r < size() && maxHeap.get(r) > maxHeap.get(ma)) ma = r; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (ma == i) break; // 交换两节点 swap(i, ma); // 循环向下堆化 i = ma; } } ``` === "C++" ```cpp title="my_heap.cpp" /* 元素出堆 */ void pop() { // 判空处理 if (empty()) { throw out_of_range("堆为空"); } // 交换根节点与最右叶节点(即交换首元素与尾元素) swap(maxHeap[0], maxHeap[size() - 1]); // 删除节点 maxHeap.pop_back(); // 从顶至底堆化 siftDown(0); } /* 从节点 i 开始,从顶至底堆化 */ void siftDown(int i) { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma int l = left(i), r = right(i), ma = i; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (l < size() && maxHeap[l] > maxHeap[ma]) ma = l; if (r < size() && maxHeap[r] > maxHeap[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (ma == i) break; swap(maxHeap[i], maxHeap[ma]); // 循环向下堆化 i = ma; } } ``` === "Python" ```python title="my_heap.py" def pop(self) -> int: """元素出堆""" # 判空处理 if self.is_empty(): raise IndexError("堆为空") # 交换根节点与最右叶节点(即交换首元素与尾元素) self.swap(0, self.size() - 1) # 删除节点 val = self.max_heap.pop() # 从顶至底堆化 self.sift_down(0) # 返回堆顶元素 return val def sift_down(self, i: int): """从节点 i 开始,从顶至底堆化""" while True: # 判断节点 i, l, r 中值最大的节点,记为 ma l, r, ma = self.left(i), self.right(i), i if l < self.size() and self.max_heap[l] > self.max_heap[ma]: ma = l if r < self.size() and self.max_heap[r] > self.max_heap[ma]: ma = r # 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if ma == i: break # 交换两节点 self.swap(i, ma) # 循环向下堆化 i = ma ``` === "Go" ```go title="my_heap.go" /* 元素出堆 */ func (h *maxHeap) pop() any { // 判空处理 if h.isEmpty() { fmt.Println("error") return nil } // 交换根节点与最右叶节点(即交换首元素与尾元素) h.swap(0, h.size()-1) // 删除节点 val := h.data[len(h.data)-1] h.data = h.data[:len(h.data)-1] // 从顶至底堆化 h.siftDown(0) // 返回堆顶元素 return val } /* 从节点 i 开始,从顶至底堆化 */ func (h *maxHeap) siftDown(i int) { for true { // 判断节点 i, l, r 中值最大的节点,记为 max l, r, max := h.left(i), h.right(i), i if l < h.size() && h.data[l].(int) > h.data[max].(int) { max = l } if r < h.size() && h.data[r].(int) > h.data[max].(int) { max = r } // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if max == i { break } // 交换两节点 h.swap(i, max) // 循环向下堆化 i = max } } ``` === "JavaScript" ```javascript title="my_heap.js" /* 元素出堆 */ pop() { // 判空处理 if (this.isEmpty()) throw new Error('堆为空'); // 交换根节点与最右叶节点(即交换首元素与尾元素) this.#swap(0, this.size() - 1); // 删除节点 const val = this.#maxHeap.pop(); // 从顶至底堆化 this.#siftDown(0); // 返回堆顶元素 return val; } /* 从节点 i 开始,从顶至底堆化 */ #siftDown(i) { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma const l = this.#left(i), r = this.#right(i); let ma = i; if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l; if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (ma == i) break; // 交换两节点 this.#swap(i, ma); // 循环向下堆化 i = ma; } } ``` === "TypeScript" ```typescript title="my_heap.ts" /* 元素出堆 */ pop(): number { // 判空处理 if (this.isEmpty()) throw new RangeError('Heap is empty.'); // 交换根节点与最右叶节点(即交换首元素与尾元素) this.swap(0, this.size() - 1); // 删除节点 const val = this.maxHeap.pop(); // 从顶至底堆化 this.siftDown(0); // 返回堆顶元素 return val; } /* 从节点 i 开始,从顶至底堆化 */ siftDown(i: number): void { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma const l = this.left(i), r = this.right(i); let ma = i; if (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l; if (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (ma == i) break; // 交换两节点 this.swap(i, ma); // 循环向下堆化 i = ma; } } ``` === "C" ```c title="my_heap.c" /* 元素出堆 */ int pop(maxHeap *h) { // 判空处理 if (isEmpty(h)) { printf("heap is empty!"); return INT_MAX; } // 交换根节点与最右叶节点(即交换首元素与尾元素) swap(h, 0, size(h) - 1); // 删除节点 int val = h->data[h->size - 1]; h->size--; // 从顶至底堆化 siftDown(h, 0); // 返回堆顶元素 return val; } /* 从节点 i 开始,从顶至底堆化 */ void siftDown(maxHeap *h, int i) { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 max int l = left(h, i); int r = right(h, i); int max = i; if (l < size(h) && h->data[l] > h->data[max]) { max = l; } if (r < size(h) && h->data[r] > h->data[max]) { max = r; } // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (max == i) { break; } // 交换两节点 swap(h, i, max); // 循环向下堆化 i = max; } } ``` === "C#" ```csharp title="my_heap.cs" /* 元素出堆 */ int pop() { // 判空处理 if (isEmpty()) throw new IndexOutOfRangeException(); // 交换根节点与最右叶节点(即交换首元素与尾元素) swap(0, size() - 1); // 删除节点 int val = maxHeap.Last(); maxHeap.RemoveAt(size() - 1); // 从顶至底堆化 siftDown(0); // 返回堆顶元素 return val; } /* 从节点 i 开始,从顶至底堆化 */ void siftDown(int i) { while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma int l = left(i), r = right(i), ma = i; if (l < size() && maxHeap[l] > maxHeap[ma]) ma = l; if (r < size() && maxHeap[r] > maxHeap[ma]) ma = r; // 若“节点 i 最大”或“越过叶节点”,则结束堆化 if (ma == i) break; // 交换两节点 swap(i, ma); // 循环向下堆化 i = ma; } } ``` === "Swift" ```swift title="my_heap.swift" /* 元素出堆 */ func pop() -> Int { // 判空处理 if isEmpty() { fatalError("堆为空") } // 交换根节点与最右叶节点(即交换首元素与尾元素) swap(i: 0, j: size() - 1) // 删除节点 let val = maxHeap.remove(at: size() - 1) // 从顶至底堆化 siftDown(i: 0) // 返回堆顶元素 return val } /* 从节点 i 开始,从顶至底堆化 */ func siftDown(i: Int) { var i = i while true { // 判断节点 i, l, r 中值最大的节点,记为 ma let l = left(i: i) let r = right(i: i) var ma = i if l < size(), maxHeap[l] > maxHeap[ma] { ma = l } if r < size(), maxHeap[r] > maxHeap[ma] { ma = r } // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if ma == i { break } // 交换两节点 swap(i: i, j: ma) // 循环向下堆化 i = ma } } ``` === "Zig" ```zig title="my_heap.zig" // 元素出堆 fn pop(self: *Self) !T { // 判断处理 if (self.isEmpty()) unreachable; // 交换根节点与最右叶节点(即交换首元素与尾元素) try self.swap(0, self.size() - 1); // 删除节点 var val = self.max_heap.?.pop(); // 从顶至底堆化 try self.siftDown(0); // 返回堆顶元素 return val; } // 从节点 i 开始,从顶至底堆化 fn siftDown(self: *Self, i_: usize) !void { var i = i_; while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma var l = left(i); var r = right(i); var ma = i; if (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l; if (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出 if (ma == i) break; // 交换两节点 try self.swap(i, ma); // 循环向下堆化 i = ma; } } ``` === "Dart" ```dart title="my_heap.dart" /* 元素出堆 */ int pop() { // 判空处理 if (isEmpty()) throw Exception('堆为空'); // 交换根节点与最右叶节点(即交换首元素与尾元素) _swap(0, size() - 1); // 删除节点 int val = _maxHeap.removeLast(); // 从顶至底堆化 _siftDown(0); // 返回堆顶元素 return val; } [class]{MaxHeap}-[func]{siftDown} ``` ## 8.1.3. 堆常见应用 - **优先队列**:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 $O(\log n)$ ,而建队操作为 $O(n)$ ,这些操作都非常高效。 - **堆排序**:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。 - **获取最大的 $k$ 个元素**:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。