=begin File: n_queens.rb Created Time: 2024-05-21 Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com) =end ### 回溯算法:n 皇后 ### def backtrack(row, n, state, res, cols, diags1, diags2) # 当放置完所有行时,记录解 if row == n res << state.map { |row| row.dup } return end # 遍历所有列 for col in 0...n # 计算该格子对应的主对角线和次对角线 diag1 = row - col + n - 1 diag2 = row + col # 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !cols[col] && !diags1[diag1] && !diags2[diag2] # 尝试:将皇后放置在该格子 state[row][col] = "Q" cols[col] = diags1[diag1] = diags2[diag2] = true # 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2) # 回退:将该格子恢复为空位 state[row][col] = "#" cols[col] = diags1[diag1] = diags2[diag2] = false end end end ### 求解 n 皇后 ### def n_queens(n) # 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 state = Array.new(n) { Array.new(n, "#") } cols = Array.new(n, false) # 记录列是否有皇后 diags1 = Array.new(2 * n - 1, false) # 记录主对角线上是否有皇后 diags2 = Array.new(2 * n - 1, false) # 记录次对角线上是否有皇后 res = [] backtrack(0, n, state, res, cols, diags1, diags2) res end ### Driver Code ### if __FILE__ == $0 n = 4 res = n_queens(n) puts "输入棋盘长宽为 #{n}" puts "皇后放置方案共有 #{res.length} 种" for state in res puts "--------------------" for row in state p row end end end