#include #include #include using namespace std; /* 0-1 Knapsack: Brute force search */ int knapsackDFS(vector &wgt, vector &val, int i, int c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFS(wgt, val, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i int no = knapsackDFS(wgt, val, i - 1, c); int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]; // Return the greater value of the two options return max(no, yes); } /* 0-1 Knapsack: Memoized search */ int knapsackDFSMem(vector &wgt, vector &val, vector> &mem, int i, int c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0; } // If there is a record, return it if (mem[i][c] != -1) { return mem[i][c]; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (wgt[i - 1] > c) { return knapsackDFSMem(wgt, val, mem, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i int no = knapsackDFSMem(wgt, val, mem, i - 1, c); int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]; // Record and return the greater value of the two options mem[i][c] = max(no, yes); return mem[i][c]; } /* 0-1 Knapsack: Dynamic programming */ int knapsackDP(vector &wgt, vector &val, int cap) { int n = wgt.size(); // Initialize dp table vector> dp(n + 1, vector(cap + 1, 0)); // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c]; } else { // The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]); } } } return dp[n][cap]; } /* 0-1 Knapsack: Space-optimized dynamic programming */ int knapsackDPComp(vector &wgt, vector &val, int cap) { int n = wgt.size(); // Initialize dp table vector dp(cap + 1, 0); // State transition for (int i = 1; i <= n; i++) { // Traverse in reverse order for (int c = cap; c >= 1; c--) { if (wgt[i - 1] <= c) { // The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]); } } } return dp[cap]; } /* Driver Code */ int main() { vector wgt = {10, 20, 30, 40, 50}; vector val = {50, 120, 150, 210, 240}; int cap = 50; int n = wgt.size(); // Brute force search int res = knapsackDFS(wgt, val, n, cap); cout << "The maximum value within the bag capacity is " << res << endl; // Memoized search vector> mem(n + 1, vector(cap + 1, -1)); res = knapsackDFSMem(wgt, val, mem, n, cap); cout << "The maximum value within the bag capacity is " << res << endl; // Dynamic programming res = knapsackDP(wgt, val, cap); cout << "The maximum value within the bag capacity is " << res << endl; // Space-optimized dynamic programming res = knapsackDPComp(wgt, val, cap); cout << "The maximum value within the bag capacity is " << res << endl; return 0; }