/** * File: min_path_sum.java * Created Time: 2023-07-10 * Author: krahets (krahets@163.com) */ package chapter_dynamic_programming; import java.util.Arrays; public class min_path_sum { /* Minimum path sum: Brute force search */ static int minPathSumDFS(int[][] grid, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return Integer.MAX_VALUE; } // Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) int up = minPathSumDFS(grid, i - 1, j); int left = minPathSumDFS(grid, i, j - 1); // Return the minimum path cost from the top-left to (i, j) return Math.min(left, up) + grid[i][j]; } /* Minimum path sum: Memoized search */ static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return Integer.MAX_VALUE; } // If there is a record, return it if (mem[i][j] != -1) { return mem[i][j]; } // The minimum path cost from the left and top cells int up = minPathSumDFSMem(grid, mem, i - 1, j); int left = minPathSumDFSMem(grid, mem, i, j - 1); // Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = Math.min(left, up) + grid[i][j]; return mem[i][j]; } /* Minimum path sum: Dynamic programming */ static int minPathSumDP(int[][] grid) { int n = grid.length, m = grid[0].length; // Initialize dp table int[][] dp = new int[n][m]; dp[0][0] = grid[0][0]; // State transition: first row for (int j = 1; j < m; j++) { dp[0][j] = dp[0][j - 1] + grid[0][j]; } // State transition: first column for (int i = 1; i < n; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } // State transition: the rest of the rows and columns for (int i = 1; i < n; i++) { for (int j = 1; j < m; j++) { dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]; } } return dp[n - 1][m - 1]; } /* Minimum path sum: Space-optimized dynamic programming */ static int minPathSumDPComp(int[][] grid) { int n = grid.length, m = grid[0].length; // Initialize dp table int[] dp = new int[m]; // State transition: first row dp[0] = grid[0][0]; for (int j = 1; j < m; j++) { dp[j] = dp[j - 1] + grid[0][j]; } // State transition: the rest of the rows for (int i = 1; i < n; i++) { // State transition: first column dp[0] = dp[0] + grid[i][0]; // State transition: the rest of the columns for (int j = 1; j < m; j++) { dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j]; } } return dp[m - 1]; } public static void main(String[] args) { int[][] grid = { { 1, 3, 1, 5 }, { 2, 2, 4, 2 }, { 5, 3, 2, 1 }, { 4, 3, 5, 2 } }; int n = grid.length, m = grid[0].length; // Brute force search int res = minPathSumDFS(grid, n - 1, m - 1); System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res); // Memoized search int[][] mem = new int[n][m]; for (int[] row : mem) { Arrays.fill(row, -1); } res = minPathSumDFSMem(grid, mem, n - 1, m - 1); System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res); // Dynamic programming res = minPathSumDP(grid); System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res); // Space-optimized dynamic programming res = minPathSumDPComp(grid); System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res); } }