""" File: subset_sum_i_naive.py Created Time: 2023-06-17 Author: krahets (krahets@163.com) """ def backtrack( state: list[int], target: int, total: int, choices: list[int], res: list[list[int]], ): """Backtracking algorithm: Subset Sum I""" # When the subset sum equals target, record the solution if total == target: res.append(list(state)) return # Traverse all choices for i in range(len(choices)): # Pruning: if the subset sum exceeds target, skip that choice if total + choices[i] > target: continue # Attempt: make a choice, update elements and total state.append(choices[i]) # Proceed to the next round of selection backtrack(state, target, total + choices[i], choices, res) # Retract: undo the choice, restore to the previous state state.pop() def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]: """Solve Subset Sum I (including duplicate subsets)""" state = [] # State (subset) total = 0 # Subset sum res = [] # Result list (subset list) backtrack(state, target, total, nums, res) return res """Driver Code""" if __name__ == "__main__": nums = [3, 4, 5] target = 9 res = subset_sum_i_naive(nums, target) print(f"Input array nums = {nums}, target = {target}") print(f"All subsets equal to {target} res = {res}") print(f"The result of this method includes duplicate sets")