// File: n_queens.go // Created Time: 2023-05-09 // Author: Reanon (793584285@qq.com) package chapter_backtracking /* 回溯演算法:n 皇后 */ func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) { // 當放置完所有行時,記錄解 if row == n { newState := make([][]string, len(*state)) for i, _ := range newState { newState[i] = make([]string, len((*state)[0])) copy(newState[i], (*state)[i]) } *res = append(*res, newState) return } // 走訪所有列 for col := 0; col < n; col++ { // 計算該格子對應的主對角線和次對角線 diag1 := row - col + n - 1 diag2 := row + col // 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后 if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] { // 嘗試:將皇后放置在該格子 (*state)[row][col] = "Q" (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true // 放置下一行 backtrack(row+1, n, state, res, cols, diags1, diags2) // 回退:將該格子恢復為空位 (*state)[row][col] = "#" (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false } } } /* 求解 n 皇后 */ func nQueens(n int) [][][]string { // 初始化 n*n 大小的棋盤,其中 'Q' 代表皇后,'#' 代表空位 state := make([][]string, n) for i := 0; i < n; i++ { row := make([]string, n) for i := 0; i < n; i++ { row[i] = "#" } state[i] = row } // 記錄列是否有皇后 cols := make([]bool, n) diags1 := make([]bool, 2*n-1) diags2 := make([]bool, 2*n-1) res := make([][][]string, 0) backtrack(0, n, &state, &res, &cols, &diags1, &diags2) return res }