--- comments: true --- # 13.4   n queens problem !!! question According to the rules of chess, a queen can attack pieces in the same row, column, or on a diagonal line. Given $n$ queens and an $n \times n$ chessboard, find arrangements where no two queens can attack each other. As shown in Figure 13-15, when $n = 4$, there are two solutions. From the perspective of the backtracking algorithm, an $n \times n$ chessboard has $n^2$ squares, presenting all possible choices `choices`. The state of the chessboard `state` changes continuously as each queen is placed. ![Solution to the 4 queens problem](n_queens_problem.assets/solution_4_queens.png){ class="animation-figure" }

Figure 13-15   Solution to the 4 queens problem

Figure 13-16 shows the three constraints of this problem: **multiple queens cannot be on the same row, column, or diagonal**. It is important to note that diagonals are divided into the main diagonal `\` and the secondary diagonal `/`. ![Constraints of the n queens problem](n_queens_problem.assets/n_queens_constraints.png){ class="animation-figure" }

Figure 13-16   Constraints of the n queens problem

### 1.   Row-by-row placing strategy As the number of queens equals the number of rows on the chessboard, both being $n$, it is easy to conclude: **each row on the chessboard allows and only allows one queen to be placed**. This means that we can adopt a row-by-row placing strategy: starting from the first row, place one queen per row until the last row is reached. Figure 13-17 shows the row-by-row placing process for the 4 queens problem. Due to space limitations, the figure only expands one search branch of the first row, and prunes any placements that do not meet the column and diagonal constraints. ![Row-by-row placing strategy](n_queens_problem.assets/n_queens_placing.png){ class="animation-figure" }

Figure 13-17   Row-by-row placing strategy

Essentially, **the row-by-row placing strategy serves as a pruning function**, avoiding all search branches that would place multiple queens in the same row. ### 2.   Column and diagonal pruning To satisfy column constraints, we can use a boolean array `cols` of length $n$ to track whether a queen occupies each column. Before each placement decision, `cols` is used to prune the columns that already have queens, and it is dynamically updated during backtracking. How about the diagonal constraints? Let the row and column indices of a cell on the chessboard be $(row, col)$. By selecting a specific main diagonal, we notice that the difference $row - col$ is the same for all cells on that diagonal, **meaning that $row - col$ is a constant value on that diagonal**. Thus, if two cells satisfy $row_1 - col_1 = row_2 - col_2$, they are definitely on the same main diagonal. Using this pattern, we can utilize the array `diags1` shown in Figure 13-18 to track whether a queen is on any main diagonal. Similarly, **the sum $row + col$ is a constant value for all cells on a secondary diagonal**. We can also use the array `diags2` to handle secondary diagonal constraints. ![Handling column and diagonal constraints](n_queens_problem.assets/n_queens_cols_diagonals.png){ class="animation-figure" }

Figure 13-18   Handling column and diagonal constraints

### 3.   Code implementation Please note, in an $n$-dimensional matrix, the range of $row - col$ is $[-n + 1, n - 1]$, and the range of $row + col$ is $[0, 2n - 2]$, thus the number of both main and secondary diagonals is $2n - 1$, meaning the length of both arrays `diags1` and `diags2` is $2n - 1$. === "Python" ```python title="n_queens.py" def backtrack( row: int, n: int, state: list[list[str]], res: list[list[list[str]]], cols: list[bool], diags1: list[bool], diags2: list[bool], ): """回溯算法:n 皇后""" # 当放置完所有行时,记录解 if row == n: res.append([list(row) for row in state]) return # 遍历所有列 for col in range(n): # 计算该格子对应的主对角线和次对角线 diag1 = row - col + n - 1 diag2 = row + col # 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if not cols[col] and not diags1[diag1] and not diags2[diag2]: # 尝试:将皇后放置在该格子 state[row][col] = "Q" cols[col] = diags1[diag1] = diags2[diag2] = True # 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2) # 回退:将该格子恢复为空位 state[row][col] = "#" cols[col] = diags1[diag1] = diags2[diag2] = False def n_queens(n: int) -> list[list[list[str]]]: """求解 n 皇后""" # 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 state = [["#" for _ in range(n)] for _ in range(n)] cols = [False] * n # 记录列是否有皇后 diags1 = [False] * (2 * n - 1) # 记录主对角线上是否有皇后 diags2 = [False] * (2 * n - 1) # 记录次对角线上是否有皇后 res = [] backtrack(0, n, state, res, cols, diags1, diags2) return res ``` === "C++" ```cpp title="n_queens.cpp" /* 回溯算法:n 皇后 */ void backtrack(int row, int n, vector> &state, vector>> &res, vector &cols, vector &diags1, vector &diags2) { // 当放置完所有行时,记录解 if (row == n) { res.push_back(state); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = "#"; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ vector>> nQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 vector> state(n, vector(n, "#")); vector cols(n, false); // 记录列是否有皇后 vector diags1(2 * n - 1, false); // 记录主对角线上是否有皇后 vector diags2(2 * n - 1, false); // 记录次对角线上是否有皇后 vector>> res; backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "Java" ```java title="n_queens.java" /* 回溯算法:n 皇后 */ void backtrack(int row, int n, List> state, List>> res, boolean[] cols, boolean[] diags1, boolean[] diags2) { // 当放置完所有行时,记录解 if (row == n) { List> copyState = new ArrayList<>(); for (List sRow : state) { copyState.add(new ArrayList<>(sRow)); } res.add(copyState); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state.get(row).set(col, "Q"); cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state.get(row).set(col, "#"); cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ List>> nQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 List> state = new ArrayList<>(); for (int i = 0; i < n; i++) { List row = new ArrayList<>(); for (int j = 0; j < n; j++) { row.add("#"); } state.add(row); } boolean[] cols = new boolean[n]; // 记录列是否有皇后 boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线上是否有皇后 boolean[] diags2 = new boolean[2 * n - 1]; // 记录次对角线上是否有皇后 List>> res = new ArrayList<>(); backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "C#" ```csharp title="n_queens.cs" /* 回溯算法:n 皇后 */ void Backtrack(int row, int n, List> state, List>> res, bool[] cols, bool[] diags1, bool[] diags2) { // 当放置完所有行时,记录解 if (row == n) { List> copyState = []; foreach (List sRow in state) { copyState.Add(new List(sRow)); } res.Add(copyState); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 Backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = "#"; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ List>> NQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 List> state = []; for (int i = 0; i < n; i++) { List row = []; for (int j = 0; j < n; j++) { row.Add("#"); } state.Add(row); } bool[] cols = new bool[n]; // 记录列是否有皇后 bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线上是否有皇后 bool[] diags2 = new bool[2 * n - 1]; // 记录次对角线上是否有皇后 List>> res = []; Backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "Go" ```go title="n_queens.go" /* 回溯算法:n 皇后 */ func backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) { // 当放置完所有行时,记录解 if row == n { newState := make([][]string, len(*state)) for i, _ := range newState { newState[i] = make([]string, len((*state)[0])) copy(newState[i], (*state)[i]) } *res = append(*res, newState) } // 遍历所有列 for col := 0; col < n; col++ { // 计算该格子对应的主对角线和次对角线 diag1 := row - col + n - 1 diag2 := row + col // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] { // 尝试:将皇后放置在该格子 (*state)[row][col] = "Q" (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true // 放置下一行 backtrack(row+1, n, state, res, cols, diags1, diags2) // 回退:将该格子恢复为空位 (*state)[row][col] = "#" (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false } } } /* 求解 n 皇后 */ func nQueens(n int) [][][]string { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 state := make([][]string, n) for i := 0; i < n; i++ { row := make([]string, n) for i := 0; i < n; i++ { row[i] = "#" } state[i] = row } // 记录列是否有皇后 cols := make([]bool, n) diags1 := make([]bool, 2*n-1) diags2 := make([]bool, 2*n-1) res := make([][][]string, 0) backtrack(0, n, &state, &res, &cols, &diags1, &diags2) return res } ``` === "Swift" ```swift title="n_queens.swift" /* 回溯算法:n 皇后 */ func backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) { // 当放置完所有行时,记录解 if row == n { res.append(state) return } // 遍历所有列 for col in 0 ..< n { // 计算该格子对应的主对角线和次对角线 let diag1 = row - col + n - 1 let diag2 = row + col // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !cols[col] && !diags1[diag1] && !diags2[diag2] { // 尝试:将皇后放置在该格子 state[row][col] = "Q" cols[col] = true diags1[diag1] = true diags2[diag2] = true // 放置下一行 backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2) // 回退:将该格子恢复为空位 state[row][col] = "#" cols[col] = false diags1[diag1] = false diags2[diag2] = false } } } /* 求解 n 皇后 */ func nQueens(n: Int) -> [[[String]]] { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 var state = Array(repeating: Array(repeating: "#", count: n), count: n) var cols = Array(repeating: false, count: n) // 记录列是否有皇后 var diags1 = Array(repeating: false, count: 2 * n - 1) // 记录主对角线上是否有皇后 var diags2 = Array(repeating: false, count: 2 * n - 1) // 记录次对角线上是否有皇后 var res: [[[String]]] = [] backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2) return res } ``` === "JS" ```javascript title="n_queens.js" /* 回溯算法:n 皇后 */ function backtrack(row, n, state, res, cols, diags1, diags2) { // 当放置完所有行时,记录解 if (row === n) { res.push(state.map((row) => row.slice())); return; } // 遍历所有列 for (let col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 const diag1 = row - col + n - 1; const diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = '#'; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ function nQueens(n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 const state = Array.from({ length: n }, () => Array(n).fill('#')); const cols = Array(n).fill(false); // 记录列是否有皇后 const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线上是否有皇后 const diags2 = Array(2 * n - 1).fill(false); // 记录次对角线上是否有皇后 const res = []; backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "TS" ```typescript title="n_queens.ts" /* 回溯算法:n 皇后 */ function backtrack( row: number, n: number, state: string[][], res: string[][][], cols: boolean[], diags1: boolean[], diags2: boolean[] ): void { // 当放置完所有行时,记录解 if (row === n) { res.push(state.map((row) => row.slice())); return; } // 遍历所有列 for (let col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 const diag1 = row - col + n - 1; const diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = '#'; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ function nQueens(n: number): string[][][] { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 const state = Array.from({ length: n }, () => Array(n).fill('#')); const cols = Array(n).fill(false); // 记录列是否有皇后 const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线上是否有皇后 const diags2 = Array(2 * n - 1).fill(false); // 记录次对角线上是否有皇后 const res: string[][][] = []; backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "Dart" ```dart title="n_queens.dart" /* 回溯算法:n 皇后 */ void backtrack( int row, int n, List> state, List>> res, List cols, List diags1, List diags2, ) { // 当放置完所有行时,记录解 if (row == n) { List> copyState = []; for (List sRow in state) { copyState.add(List.from(sRow)); } res.add(copyState); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; cols[col] = true; diags1[diag1] = true; diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = "#"; cols[col] = false; diags1[diag1] = false; diags2[diag2] = false; } } } /* 求解 n 皇后 */ List>> nQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 List> state = List.generate(n, (index) => List.filled(n, "#")); List cols = List.filled(n, false); // 记录列是否有皇后 List diags1 = List.filled(2 * n - 1, false); // 记录主对角线上是否有皇后 List diags2 = List.filled(2 * n - 1, false); // 记录次对角线上是否有皇后 List>> res = []; backtrack(0, n, state, res, cols, diags1, diags2); return res; } ``` === "Rust" ```rust title="n_queens.rs" /* 回溯算法:n 皇后 */ fn backtrack( row: usize, n: usize, state: &mut Vec>, res: &mut Vec>>, cols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool], ) { // 当放置完所有行时,记录解 if row == n { let mut copy_state: Vec> = Vec::new(); for s_row in state.clone() { copy_state.push(s_row); } res.push(copy_state); return; } // 遍历所有列 for col in 0..n { // 计算该格子对应的主对角线和次对角线 let diag1 = row + n - 1 - col; let diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !cols[col] && !diags1[diag1] && !diags2[diag2] { // 尝试:将皇后放置在该格子 state.get_mut(row).unwrap()[col] = "Q".into(); (cols[col], diags1[diag1], diags2[diag2]) = (true, true, true); // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state.get_mut(row).unwrap()[col] = "#".into(); (cols[col], diags1[diag1], diags2[diag2]) = (false, false, false); } } } /* 求解 n 皇后 */ fn n_queens(n: usize) -> Vec>> { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 let mut state: Vec> = Vec::new(); for _ in 0..n { let mut row: Vec = Vec::new(); for _ in 0..n { row.push("#".into()); } state.push(row); } let mut cols = vec![false; n]; // 记录列是否有皇后 let mut diags1 = vec![false; 2 * n - 1]; // 记录主对角线上是否有皇后 let mut diags2 = vec![false; 2 * n - 1]; // 记录次对角线上是否有皇后 let mut res: Vec>> = Vec::new(); backtrack( 0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2, ); res } ``` === "C" ```c title="n_queens.c" /* 回溯算法:n 皇后 */ void backtrack(int row, int n, char state[MAX_SIZE][MAX_SIZE], char ***res, int *resSize, bool cols[MAX_SIZE], bool diags1[2 * MAX_SIZE - 1], bool diags2[2 * MAX_SIZE - 1]) { // 当放置完所有行时,记录解 if (row == n) { res[*resSize] = (char **)malloc(sizeof(char *) * n); for (int i = 0; i < n; ++i) { res[*resSize][i] = (char *)malloc(sizeof(char) * (n + 1)); strcpy(res[*resSize][i], state[i]); } (*resSize)++; return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, resSize, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = '#'; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ char ***nQueens(int n, int *returnSize) { char state[MAX_SIZE][MAX_SIZE]; // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { state[i][j] = '#'; } state[i][n] = '\0'; } bool cols[MAX_SIZE] = {false}; // 记录列是否有皇后 bool diags1[2 * MAX_SIZE - 1] = {false}; // 记录主对角线上是否有皇后 bool diags2[2 * MAX_SIZE - 1] = {false}; // 记录次对角线上是否有皇后 char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE); *returnSize = 0; backtrack(0, n, state, res, returnSize, cols, diags1, diags2); return res; } ``` === "Kotlin" ```kotlin title="n_queens.kt" /* 回溯算法:n 皇后 */ fun backtrack( row: Int, n: Int, state: MutableList>, res: MutableList>?>, cols: BooleanArray, diags1: BooleanArray, diags2: BooleanArray ) { // 当放置完所有行时,记录解 if (row == n) { val copyState = mutableListOf>() for (sRow in state) { copyState.add(sRow.toMutableList()) } res.add(copyState) return } // 遍历所有列 for (col in 0..>?> { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 val state = mutableListOf>() for (i in 0..() for (j in 0..>?>() backtrack(0, n, state, res, cols, diags1, diags2) return res } ``` === "Ruby" ```ruby title="n_queens.rb" [class]{}-[func]{backtrack} [class]{}-[func]{n_queens} ``` === "Zig" ```zig title="n_queens.zig" [class]{}-[func]{backtrack} [class]{}-[func]{nQueens} ``` ??? pythontutor "Code Visualization"
Placing $n$ queens row-by-row, considering column constraints, from the first row to the last row there are $n$, $n-1$, $\dots$, $2$, $1$ choices, using $O(n!)$ time. When recording a solution, it is necessary to copy the matrix `state` and add it to `res`, with the copying operation using $O(n^2)$ time. Therefore, **the overall time complexity is $O(n! \cdot n^2)$**. In practice, pruning based on diagonal constraints can significantly reduce the search space, thus often the search efficiency is better than the above time complexity. Array `state` uses $O(n^2)$ space, and arrays `cols`, `diags1`, and `diags2` each use $O(n)$ space. The maximum recursion depth is $n$, using $O(n)$ stack space. Therefore, **the space complexity is $O(n^2)$**.