Figure 7-1 Parent Node, child Node, subtree
## 7.1.1 Common terminology of binary trees The commonly used terminology of binary trees is shown in Figure 7-2. - Root node: The node at the top level of the binary tree, which has no parent node. - Leaf node: A node with no children, both of its pointers point to `None`. - Edge: The line segment connecting two nodes, i.e., node reference (pointer). - The level of a node: Incrementing from top to bottom, with the root node's level being 1. - The degree of a node: The number of a node's children. In a binary tree, the degree can be 0, 1, or 2. - The height of a binary tree: The number of edges passed from the root node to the farthest leaf node. - The depth of a node: The number of edges passed from the root node to the node. - The height of a node: The number of edges from the farthest leaf node to the node. ![Common Terminology of Binary Trees](binary_tree.assets/binary_tree_terminology.png){ class="animation-figure" }Figure 7-2 Common Terminology of Binary Trees
!!! tip Please note that we usually define "height" and "depth" as "the number of edges passed," but some problems or textbooks may define them as "the number of nodes passed." In this case, both height and depth need to be incremented by 1. ## 7.1.2 Basic operations of binary trees ### 1. Initializing a binary tree Similar to a linked list, initialize nodes first, then construct references (pointers). === "Python" ```python title="binary_tree.py" # Initializing a binary tree # Initializing nodes n1 = TreeNode(val=1) n2 = TreeNode(val=2) n3 = TreeNode(val=3) n4 = TreeNode(val=4) n5 = TreeNode(val=5) # Linking references (pointers) between nodes n1.left = n2 n1.right = n3 n2.left = n4 n2.right = n5 ``` === "C++" ```cpp title="binary_tree.cpp" /* Initializing a binary tree */ // Initializing nodes TreeNode* n1 = new TreeNode(1); TreeNode* n2 = new TreeNode(2); TreeNode* n3 = new TreeNode(3); TreeNode* n4 = new TreeNode(4); TreeNode* n5 = new TreeNode(5); // Linking references (pointers) between nodes n1->left = n2; n1->right = n3; n2->left = n4; n2->right = n5; ``` === "Java" ```java title="binary_tree.java" // Initializing nodes TreeNode n1 = new TreeNode(1); TreeNode n2 = new TreeNode(2); TreeNode n3 = new TreeNode(3); TreeNode n4 = new TreeNode(4); TreeNode n5 = new TreeNode(5); // Linking references (pointers) between nodes n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "C#" ```csharp title="binary_tree.cs" /* Initializing a binary tree */ // Initializing nodes TreeNode n1 = new(1); TreeNode n2 = new(2); TreeNode n3 = new(3); TreeNode n4 = new(4); TreeNode n5 = new(5); // Linking references (pointers) between nodes n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "Go" ```go title="binary_tree.go" /* Initializing a binary tree */ // Initializing nodes n1 := NewTreeNode(1) n2 := NewTreeNode(2) n3 := NewTreeNode(3) n4 := NewTreeNode(4) n5 := NewTreeNode(5) // Linking references (pointers) between nodes n1.Left = n2 n1.Right = n3 n2.Left = n4 n2.Right = n5 ``` === "Swift" ```swift title="binary_tree.swift" // Initializing nodes let n1 = TreeNode(x: 1) let n2 = TreeNode(x: 2) let n3 = TreeNode(x: 3) let n4 = TreeNode(x: 4) let n5 = TreeNode(x: 5) // Linking references (pointers) between nodes n1.left = n2 n1.right = n3 n2.left = n4 n2.right = n5 ``` === "JS" ```javascript title="binary_tree.js" /* Initializing a binary tree */ // Initializing nodes let n1 = new TreeNode(1), n2 = new TreeNode(2), n3 = new TreeNode(3), n4 = new TreeNode(4), n5 = new TreeNode(5); // Linking references (pointers) between nodes n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "TS" ```typescript title="binary_tree.ts" /* Initializing a binary tree */ // Initializing nodes let n1 = new TreeNode(1), n2 = new TreeNode(2), n3 = new TreeNode(3), n4 = new TreeNode(4), n5 = new TreeNode(5); // Linking references (pointers) between nodes n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "Dart" ```dart title="binary_tree.dart" /* Initializing a binary tree */ // Initializing nodes TreeNode n1 = new TreeNode(1); TreeNode n2 = new TreeNode(2); TreeNode n3 = new TreeNode(3); TreeNode n4 = new TreeNode(4); TreeNode n5 = new TreeNode(5); // Linking references (pointers) between nodes n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "Rust" ```rust title="binary_tree.rs" // Initializing nodes let n1 = TreeNode::new(1); let n2 = TreeNode::new(2); let n3 = TreeNode::new(3); let n4 = TreeNode::new(4); let n5 = TreeNode::new(5); // Linking references (pointers) between nodes n1.borrow_mut().left = Some(n2.clone()); n1.borrow_mut().right = Some(n3); n2.borrow_mut().left = Some(n4); n2.borrow_mut().right = Some(n5); ``` === "C" ```c title="binary_tree.c" /* Initializing a binary tree */ // Initializing nodes TreeNode *n1 = newTreeNode(1); TreeNode *n2 = newTreeNode(2); TreeNode *n3 = newTreeNode(3); TreeNode *n4 = newTreeNode(4); TreeNode *n5 = newTreeNode(5); // Linking references (pointers) between nodes n1->left = n2; n1->right = n3; n2->left = n4; n2->right = n5; ``` === "Kotlin" ```kotlin title="binary_tree.kt" // Initializing nodes val n1 = TreeNode(1) val n2 = TreeNode(2) val n3 = TreeNode(3) val n4 = TreeNode(4) val n5 = TreeNode(5) // Linking references (pointers) between nodes n1.left = n2 n1.right = n3 n2.left = n4 n2.right = n5 ``` === "Ruby" ```ruby title="binary_tree.rb" ``` === "Zig" ```zig title="binary_tree.zig" ``` ??? pythontutor "Code visualization" https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false ### 2. Inserting and removing nodes Similar to a linked list, inserting and removing nodes in a binary tree can be achieved by modifying pointers. Figure 7-3 provides an example. ![Inserting and removing nodes in a binary tree](binary_tree.assets/binary_tree_add_remove.png){ class="animation-figure" }Figure 7-3 Inserting and removing nodes in a binary tree
=== "Python" ```python title="binary_tree.py" # Inserting and removing nodes p = TreeNode(0) # Inserting node P between n1 -> n2 n1.left = p p.left = n2 # Removing node P n1.left = n2 ``` === "C++" ```cpp title="binary_tree.cpp" /* Inserting and removing nodes */ TreeNode* P = new TreeNode(0); // Inserting node P between n1 and n2 n1->left = P; P->left = n2; // Removing node P n1->left = n2; ``` === "Java" ```java title="binary_tree.java" TreeNode P = new TreeNode(0); // Inserting node P between n1 and n2 n1.left = P; P.left = n2; // Removing node P n1.left = n2; ``` === "C#" ```csharp title="binary_tree.cs" /* Inserting and removing nodes */ TreeNode P = new(0); // Inserting node P between n1 and n2 n1.left = P; P.left = n2; // Removing node P n1.left = n2; ``` === "Go" ```go title="binary_tree.go" /* Inserting and removing nodes */ // Inserting node P between n1 and n2 p := NewTreeNode(0) n1.Left = p p.Left = n2 // Removing node P n1.Left = n2 ``` === "Swift" ```swift title="binary_tree.swift" let P = TreeNode(x: 0) // Inserting node P between n1 and n2 n1.left = P P.left = n2 // Removing node P n1.left = n2 ``` === "JS" ```javascript title="binary_tree.js" /* Inserting and removing nodes */ let P = new TreeNode(0); // Inserting node P between n1 and n2 n1.left = P; P.left = n2; // Removing node P n1.left = n2; ``` === "TS" ```typescript title="binary_tree.ts" /* Inserting and removing nodes */ const P = new TreeNode(0); // Inserting node P between n1 and n2 n1.left = P; P.left = n2; // Removing node P n1.left = n2; ``` === "Dart" ```dart title="binary_tree.dart" /* Inserting and removing nodes */ TreeNode P = new TreeNode(0); // Inserting node P between n1 and n2 n1.left = P; P.left = n2; // Removing node P n1.left = n2; ``` === "Rust" ```rust title="binary_tree.rs" let p = TreeNode::new(0); // Inserting node P between n1 and n2 n1.borrow_mut().left = Some(p.clone()); p.borrow_mut().left = Some(n2.clone()); // Removing node P n1.borrow_mut().left = Some(n2); ``` === "C" ```c title="binary_tree.c" /* Inserting and removing nodes */ TreeNode *P = newTreeNode(0); // Inserting node P between n1 and n2 n1->left = P; P->left = n2; // Removing node P n1->left = n2; ``` === "Kotlin" ```kotlin title="binary_tree.kt" val P = TreeNode(0) // Inserting node P between n1 and n2 n1.left = P P.left = n2 // Removing node P n1.left = n2 ``` === "Ruby" ```ruby title="binary_tree.rb" ``` === "Zig" ```zig title="binary_tree.zig" ``` ??? pythontutor "Code visualization" https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%B8%8E%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%0A%20%20%20%20p%20%3D%20TreeNode%280%29%0A%20%20%20%20%23%20%E5%9C%A8%20n1%20-%3E%20n2%20%E4%B8%AD%E9%97%B4%E6%8F%92%E5%85%A5%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20p%0A%20%20%20%20p.left%20%3D%20n2%0A%20%20%20%20%23%20%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20n2&cumulative=false&curInstr=37&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false !!! tip It's important to note that inserting nodes may change the original logical structure of the binary tree, while removing nodes usually means removing the node and all its subtrees. Therefore, in a binary tree, insertion and removal are usually performed through a set of operations to achieve meaningful actions. ## 7.1.3 Common types of binary trees ### 1. Perfect binary tree As shown in Figure 7-4, in a perfect binary tree, all levels of nodes are fully filled. In a perfect binary tree, the degree of leaf nodes is $0$, and the degree of all other nodes is $2$; if the tree's height is $h$, then the total number of nodes is $2^{h+1} - 1$, showing a standard exponential relationship, reflecting the common phenomenon of cell division in nature. !!! tip Please note that in the Chinese community, a perfect binary tree is often referred to as a full binary tree. ![Perfect binary tree](binary_tree.assets/perfect_binary_tree.png){ class="animation-figure" }Figure 7-4 Perfect binary tree
### 2. Complete binary tree As shown in Figure 7-5, a complete binary tree has only the bottom level nodes not fully filled, and the bottom level nodes are filled as far left as possible. ![Complete binary tree](binary_tree.assets/complete_binary_tree.png){ class="animation-figure" }Figure 7-5 Complete binary tree
### 3. Full binary tree As shown in Figure 7-6, a full binary tree has all nodes except leaf nodes having two children. ![Full binary tree](binary_tree.assets/full_binary_tree.png){ class="animation-figure" }Figure 7-6 Full binary tree
### 4. Balanced binary tree As shown in Figure 7-7, in a balanced binary tree, the absolute difference in height between the left and right subtrees of any node does not exceed 1. ![Balanced binary tree](binary_tree.assets/balanced_binary_tree.png){ class="animation-figure" }Figure 7-7 Balanced binary tree
## 7.1.4 Degeneration of binary trees Figure 7-8 shows the ideal and degenerate structures of binary trees. When every level of a binary tree is filled, it reaches the "perfect binary tree"; when all nodes are biased towards one side, the binary tree degenerates into a "linked list". - The perfect binary tree is the ideal situation, fully leveraging the "divide and conquer" advantage of binary trees. - A linked list is another extreme, where operations become linear, degrading the time complexity to $O(n)$. ![The Best and Worst Structures of Binary Trees](binary_tree.assets/binary_tree_best_worst_cases.png){ class="animation-figure" }Figure 7-8 The Best and Worst Structures of Binary Trees
As shown in Table 7-1, in the best and worst structures, the number of leaf nodes, total number of nodes, and height of the binary tree reach their maximum or minimum values.Table 7-1 The Best and Worst Structures of Binary Trees