跳转至

9.3   图的遍历

树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例

图和树都需要应用搜索算法来实现遍历操作。图的遍历方式可分为两种:「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也常被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。

9.3.1   广度优先遍历

广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外扩张。如图 9-9 所示,从左上角顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。

图的广度优先遍历

图 9-9   图的广度优先遍历

1.   算法实现

BFS 通常借助队列来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。

  1. 将遍历起始顶点 startVet 加入队列,并开启循环。
  2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
  3. 循环步骤 2. ,直到所有顶点被访问完成后结束。

为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。

graph_bfs.py
[class]{}-[func]{graph_bfs}
graph_bfs.cpp
[class]{}-[func]{graphBFS}
graph_bfs.java
[class]{graph_bfs}-[func]{graphBFS}
graph_bfs.cs
[class]{graph_bfs}-[func]{graphBFS}
graph_bfs.go
[class]{}-[func]{graphBFS}
graph_bfs.swift
[class]{}-[func]{graphBFS}
graph_bfs.js
[class]{}-[func]{graphBFS}
graph_bfs.ts
[class]{}-[func]{graphBFS}
graph_bfs.dart
[class]{}-[func]{graphBFS}
graph_bfs.rs
[class]{}-[func]{graph_bfs}
graph_bfs.c
[class]{}-[func]{graphBFS}
graph_bfs.zig
[class]{}-[func]{graphBFS}

代码相对抽象,建议对照图 9-10 来加深理解。

图的广度优先遍历步骤

graph_bfs_step2

graph_bfs_step3

graph_bfs_step4

graph_bfs_step5

graph_bfs_step6

graph_bfs_step7

graph_bfs_step8

graph_bfs_step9

graph_bfs_step10

graph_bfs_step11

图 9-10   图的广度优先遍历步骤

广度优先遍历的序列是否唯一?

不唯一。广度优先遍历只要求按“由近及远”的顺序遍历,而多个相同距离的顶点的遍历顺序是允许被任意打乱的。以图 9-10 为例,顶点 \(1\)\(3\) 的访问顺序可以交换、顶点 \(2\)\(4\)\(6\) 的访问顺序也可以任意交换。

2.   复杂度分析

时间复杂度: 所有顶点都会入队并出队一次,使用 \(O(|V|)\) 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。

空间复杂度: 列表 res ,哈希表 visited ,队列 que 中的顶点数量最多为 \(|V|\) ,使用 \(O(|V|)\) 空间。

9.3.2   深度优先遍历

深度优先遍历是一种优先走到底、无路可走再回头的遍历方式。如图 9-11 所示,从左上角顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。

图的深度优先遍历

图 9-11   图的深度优先遍历

1.   算法实现

这种“走到尽头再返回”的算法范式通常基于递归来实现。与广度优先遍历类似,在深度优先遍历中我们也需要借助一个哈希表 visited 来记录已被访问的顶点,以避免重复访问顶点。

graph_dfs.py
[class]{}-[func]{dfs}

[class]{}-[func]{graph_dfs}
graph_dfs.cpp
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.java
[class]{graph_dfs}-[func]{dfs}

[class]{graph_dfs}-[func]{graphDFS}
graph_dfs.cs
[class]{graph_dfs}-[func]{dfs}

[class]{graph_dfs}-[func]{graphDFS}
graph_dfs.go
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.swift
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.js
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.ts
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.dart
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.rs
[class]{}-[func]{dfs}

[class]{}-[func]{graph_dfs}
graph_dfs.c
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
graph_dfs.zig
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}

深度优先遍历的算法流程如图 9-12 所示。

  • 直虚线代表向下递推,表示开启了一个新的递归方法来访问新顶点。
  • 曲虚线代表向上回溯,表示此递归方法已经返回,回溯到了开启此递归方法的位置。

为了加深理解,建议将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。

图的深度优先遍历步骤

graph_dfs_step2

graph_dfs_step3

graph_dfs_step4

graph_dfs_step5

graph_dfs_step6

graph_dfs_step7

graph_dfs_step8

graph_dfs_step9

graph_dfs_step10

graph_dfs_step11

图 9-12   图的深度优先遍历步骤

深度优先遍历的序列是否唯一?

与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。

以树的遍历为例,“根 \(\rightarrow\)\(\rightarrow\) 右”、“左 \(\rightarrow\)\(\rightarrow\) 右”、“左 \(\rightarrow\)\(\rightarrow\) 根”分别对应前序、中序、后序遍历,它们展示了三种不同的遍历优先级,然而这三者都属于深度优先遍历。

2.   复杂度分析

时间复杂度: 所有顶点都会被访问 \(1\) 次,使用 \(O(|V|)\) 时间;所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。

空间复杂度: 列表 res ,哈希表 visited 顶点数量最多为 \(|V|\) ,递归深度最大为 \(|V|\) ,因此使用 \(O(|V|)\) 空间。

欢迎在评论区留下你的见解、疑惑或建议