""" File: time_complexity.py Created Time: 2022-11-25 Author: krahets (krahets@163.com) """ def constant(n: int) -> int: """常数阶""" count = 0 size = 100000 for _ in range(size): count += 1 return count def linear(n: int) -> int: """线性阶""" count = 0 for _ in range(n): count += 1 return count def array_traversal(nums: list[int]) -> int: """线性阶(遍历数组)""" count = 0 # 循环次数与数组长度成正比 for num in nums: count += 1 return count def quadratic(n: int) -> int: """平方阶""" count = 0 # 循环次数与数据大小 n 成平方关系 for i in range(n): for j in range(n): count += 1 return count def bubble_sort(nums: list[int]) -> int: """平方阶(冒泡排序)""" count = 0 # 计数器 # 外循环:未排序区间为 [0, i] for i in range(len(nums) - 1, 0, -1): # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j in range(i): if nums[j] > nums[j + 1]: # 交换 nums[j] 与 nums[j + 1] tmp: int = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 # 元素交换包含 3 个单元操作 return count def exponential(n: int) -> int: """指数阶(循环实现)""" count = 0 base = 1 # 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for _ in range(n): for _ in range(base): count += 1 base *= 2 # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count def exp_recur(n: int) -> int: """指数阶(递归实现)""" if n == 1: return 1 return exp_recur(n - 1) + exp_recur(n - 1) + 1 def logarithmic(n: int) -> int: """对数阶(循环实现)""" count = 0 while n > 1: n = n / 2 count += 1 return count def log_recur(n: int) -> int: """对数阶(递归实现)""" if n <= 1: return 0 return log_recur(n / 2) + 1 def linear_log_recur(n: int) -> int: """线性对数阶""" if n <= 1: return 1 # 一分为二,子问题的规模减小一半 count = linear_log_recur(n // 2) + linear_log_recur(n // 2) # 当前子问题包含 n 个操作 for _ in range(n): count += 1 return count def factorial_recur(n: int) -> int: """阶乘阶(递归实现)""" if n == 0: return 1 count = 0 # 从 1 个分裂出 n 个 for _ in range(n): count += factorial_recur(n - 1) return count """Driver Code""" if __name__ == "__main__": # 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 n = 8 print("输入数据大小 n =", n) count = constant(n) print("常数阶的操作数量 =", count) count = linear(n) print("线性阶的操作数量 =", count) count = array_traversal([0] * n) print("线性阶(遍历数组)的操作数量 =", count) count = quadratic(n) print("平方阶的操作数量 =", count) nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1] count = bubble_sort(nums) print("平方阶(冒泡排序)的操作数量 =", count) count = exponential(n) print("指数阶(循环实现)的操作数量 =", count) count = exp_recur(n) print("指数阶(递归实现)的操作数量 =", count) count = logarithmic(n) print("对数阶(循环实现)的操作数量 =", count) count = log_recur(n) print("对数阶(递归实现)的操作数量 =", count) count = linear_log_recur(n) print("线性对数阶(递归实现)的操作数量 =", count) count = factorial_recur(n) print("阶乘阶(递归实现)的操作数量 =", count)