# 二元樹走訪 從物理結構的角度來看,樹是一種基於鏈結串列的資料結構,因此其走訪方式是透過指標逐個訪問節點。然而,樹是一種非線性資料結構,這使得走訪樹比走訪鏈結串列更加複雜,需要藉助搜尋演算法來實現。 二元樹常見的走訪方式包括層序走訪、前序走訪、中序走訪和後序走訪等。 ## 層序走訪 如下圖所示,層序走訪(level-order traversal)從頂部到底部逐層走訪二元樹,並在每一層按照從左到右的順序訪問節點。 層序走訪本質上屬於廣度優先走訪(breadth-first traversal),也稱廣度優先搜尋(breadth-first search, BFS),它體現了一種“一圈一圈向外擴展”的逐層走訪方式。 ![二元樹的層序走訪](binary_tree_traversal.assets/binary_tree_bfs.png) ### 程式碼實現 廣度優先走訪通常藉助“佇列”來實現。佇列遵循“先進先出”的規則,而廣度優先走訪則遵循“逐層推進”的規則,兩者背後的思想是一致的。實現程式碼如下: ```src [file]{binary_tree_bfs}-[class]{}-[func]{level_order} ``` ### 複雜度分析 - **時間複雜度為 $O(n)$** :所有節點被訪問一次,使用 $O(n)$ 時間,其中 $n$ 為節點數量。 - **空間複雜度為 $O(n)$** :在最差情況下,即滿二元樹時,走訪到最底層之前,佇列中最多同時存在 $(n + 1) / 2$ 個節點,佔用 $O(n)$ 空間。 ## 前序、中序、後序走訪 相應地,前序、中序和後序走訪都屬於深度優先走訪(depth-first traversal),也稱深度優先搜尋(depth-first search, DFS),它體現了一種“先走到盡頭,再回溯繼續”的走訪方式。 下圖展示了對二元樹進行深度優先走訪的工作原理。**深度優先走訪就像是繞著整棵二元樹的外圍“走”一圈**,在每個節點都會遇到三個位置,分別對應前序走訪、中序走訪和後序走訪。 ![二元搜尋樹的前序、中序、後序走訪](binary_tree_traversal.assets/binary_tree_dfs.png) ### 程式碼實現 深度優先搜尋通常基於遞迴實現: ```src [file]{binary_tree_dfs}-[class]{}-[func]{post_order} ``` !!! tip 深度優先搜尋也可以基於迭代實現,有興趣的讀者可以自行研究。 下圖展示了前序走訪二元樹的遞迴過程,其可分為“遞”和“迴”兩個逆向的部分。 1. “遞”表示開啟新方法,程式在此過程中訪問下一個節點。 2. “迴”表示函式返回,代表當前節點已經訪問完畢。 === "<1>" ![前序走訪的遞迴過程](binary_tree_traversal.assets/preorder_step1.png) === "<2>" ![preorder_step2](binary_tree_traversal.assets/preorder_step2.png) === "<3>" ![preorder_step3](binary_tree_traversal.assets/preorder_step3.png) === "<4>" ![preorder_step4](binary_tree_traversal.assets/preorder_step4.png) === "<5>" ![preorder_step5](binary_tree_traversal.assets/preorder_step5.png) === "<6>" ![preorder_step6](binary_tree_traversal.assets/preorder_step6.png) === "<7>" ![preorder_step7](binary_tree_traversal.assets/preorder_step7.png) === "<8>" ![preorder_step8](binary_tree_traversal.assets/preorder_step8.png) === "<9>" ![preorder_step9](binary_tree_traversal.assets/preorder_step9.png) === "<10>" ![preorder_step10](binary_tree_traversal.assets/preorder_step10.png) === "<11>" ![preorder_step11](binary_tree_traversal.assets/preorder_step11.png) ### 複雜度分析 - **時間複雜度為 $O(n)$** :所有節點被訪問一次,使用 $O(n)$ 時間。 - **空間複雜度為 $O(n)$** :在最差情況下,即樹退化為鏈結串列時,遞迴深度達到 $n$ ,系統佔用 $O(n)$ 堆疊幀空間。