跳转至

14.1.   初探动态规划

「动态规划 Dynamic Programming」是一种通过将复杂问题分解为更简单的子问题的方式来求解问题的方法。它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。

在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。

爬楼梯

给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,请问有多少种方案可以爬到楼顶。

如下图所示,对于一个 \(3\) 阶楼梯,共有 \(3\) 种方案可以爬到楼顶。

爬到第 3 阶的方案数量

Fig. 爬到第 3 阶的方案数量

本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 \(1\) 阶或 \(2\) 阶,每当到达楼梯顶部时就将方案数量加 \(1\) ,当越过楼梯顶部时就将其剪枝。

climbing_stairs_backtrack.java
/* 回溯 */
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
    // 当爬到第 n 阶时,方案数量加 1
    if (state == n)
        res.set(0, res.get(0) + 1);
    // 遍历所有选择
    for (Integer choice : choices) {
        // 剪枝:不允许越过第 n 阶
        if (state + choice > n)
            break;
        // 尝试:做出选择,更新状态
        backtrack(choices, state + choice, n, res);
        // 回退
    }
}

/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
    List<Integer> choices = Arrays.asList(1, 2); // 可选择向上爬 1 或 2 阶
    int state = 0; // 从第 0 阶开始爬
    List<Integer> res = new ArrayList<>();
    res.add(0); // 使用 res[0] 记录方案数量
    backtrack(choices, state, n, res);
    return res.get(0);
}
climbing_stairs_backtrack.cpp
/* 回溯 */
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
    // 当爬到第 n 阶时,方案数量加 1
    if (state == n)
        res[0]++;
    // 遍历所有选择
    for (auto &choice : choices) {
        // 剪枝:不允许越过第 n 阶
        if (state + choice > n)
            break;
        // 尝试:做出选择,更新状态
        backtrack(choices, state + choice, n, res);
        // 回退
    }
}

/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
    vector<int> choices = {1, 2}; // 可选择向上爬 1 或 2 阶
    int state = 0;                // 从第 0 阶开始爬
    vector<int> res = {0};        // 使用 res[0] 记录方案数量
    backtrack(choices, state, n, res);
    return res[0];
}
climbing_stairs_backtrack.py
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
    """回溯"""
    # 当爬到第 n 阶时,方案数量加 1
    if state == n:
        res[0] += 1
    # 遍历所有选择
    for choice in choices:
        # 剪枝:不允许越过第 n 阶
        if state + choice > n:
            break
        # 尝试:做出选择,更新状态
        backtrack(choices, state + choice, n, res)
        # 回退

def climbing_stairs_backtrack(n: int) -> int:
    """爬楼梯:回溯"""
    choices = [1, 2]  # 可选择向上爬 1 或 2 阶
    state = 0  # 从第 0 阶开始爬
    res = [0]  # 使用 res[0] 记录方案数量
    backtrack(choices, state, n, res)
    return res[0]
climbing_stairs_backtrack.go
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}
climbing_stairs_backtrack.js
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}
climbing_stairs_backtrack.ts
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}
climbing_stairs_backtrack.c
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}
climbing_stairs_backtrack.cs
/* 回溯 */
void backtrack(List<int> choices, int state, int n, List<int> res) {
    // 当爬到第 n 阶时,方案数量加 1
    if (state == n)
        res[0]++;
    // 遍历所有选择
    foreach (int choice in choices) {
        // 剪枝:不允许越过第 n 阶
        if (state + choice > n)
            break;
        // 尝试:做出选择,更新状态
        backtrack(choices, state + choice, n, res);
        // 回退
    }
}

/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
    List<int> choices = new List<int> { 1, 2 }; // 可选择向上爬 1 或 2 阶
    int state = 0; // 从第 0 阶开始爬
    List<int> res = new List<int> { 0 }; // 使用 res[0] 记录方案数量
    backtrack(choices, state, n, res);
    return res[0];
}
climbing_stairs_backtrack.swift
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}
climbing_stairs_backtrack.zig
// 回溯
fn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {
    // 当爬到第 n 阶时,方案数量加 1
    if (state == n) {
        res.items[0] = res.items[0] + 1;
    }
    // 遍历所有选择
    for (choices) |choice| {
        // 剪枝:不允许越过第 n 阶
        if (state + choice > n) {
            break;
        }
        // 尝试:做出选择,更新状态
        backtrack(choices, state + choice, n, res);
        // 回退
    }
}

// 爬楼梯:回溯
fn climbingStairsBacktrack(n: usize) !i32 {
    var choices = [_]i32{ 1, 2 }; // 可选择向上爬 1 或 2 阶
    var state: i32 = 0; // 从第 0 阶开始爬
    var res = std.ArrayList(i32).init(std.heap.page_allocator);
    defer res.deinit();
    try res.append(0); // 使用 res[0] 记录方案数量
    backtrack(&choices, state, @intCast(n), res);
    return res.items[0];
}
climbing_stairs_backtrack.dart
[class]{}-[func]{backtrack}

[class]{}-[func]{climbingStairsBacktrack}

14.1.1.   方法一:暴力搜索

回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。

对于本题,我们可以尝试将问题拆解为更小的子问题。设爬到第 \(i\) 阶共有 \(dp[i]\) 种方案,那么 \(dp[i]\) 就是原问题,其子问题包括:

\[ dp[i-1] , dp[i-2] , \cdots , dp[2] , dp[1] \]

由于每轮只能上 \(1\) 阶或 \(2\) 阶,因此当我们站在第 \(i\) 阶楼梯上时,上一轮只可能站在第 \(i - 1\) 阶或第 \(i - 2\) 阶上,换句话说,我们只能从第 \(i -1\) 阶或第 \(i - 2\) 阶前往第 \(i\) 阶。因此,爬到第 \(i - 1\) 阶的方案数加上爬到第 \(i - 2\) 阶的方案数就等于爬到第 \(i\) 阶的方案数,即:

\[ dp[i] = dp[i-1] + dp[i-2] \]

方案数量递推关系

Fig. 方案数量递推关系

也就是说,在爬楼梯问题中,各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成

我们可以基于此递推公式写出暴力搜索代码:以 \(dp[n]\) 为起始点,从顶至底地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 \(dp[1]\)\(dp[2]\) 时返回。

请注意,最小子问题的解 \(dp[1] = 1\) , \(dp[2] = 2\) 是已知的,代表爬到第 \(1\) , \(2\) 阶分别有 \(1\) , \(2\) 种方案。

观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。

climbing_stairs_dfs.java
/* 搜索 */
int dfs(int i) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1) + dfs(i - 2);
    return count;
}

/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
    return dfs(n);
}
climbing_stairs_dfs.cpp
/* 搜索 */
int dfs(int i) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1) + dfs(i - 2);
    return count;
}

/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
    return dfs(n);
}
climbing_stairs_dfs.py
def dfs(i: int) -> int:
    """搜索"""
    # 已知 dp[1] 和 dp[2] ,返回之
    if i == 1 or i == 2:
        return i
    # dp[i] = dp[i-1] + dp[i-2]
    count = dfs(i - 1) + dfs(i - 2)
    return count

def climbing_stairs_dfs(n: int) -> int:
    """爬楼梯:搜索"""
    return dfs(n)
climbing_stairs_dfs.go
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}
climbing_stairs_dfs.js
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}
climbing_stairs_dfs.ts
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}
climbing_stairs_dfs.c
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}
climbing_stairs_dfs.cs
/* 搜索 */
int dfs(int i) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1) + dfs(i - 2);
    return count;
}

/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
    return dfs(n);
}
climbing_stairs_dfs.swift
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}
climbing_stairs_dfs.zig
// 搜索
fn dfs(i: usize) i32 {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 or i == 2) {
        return @intCast(i);
    }
    // dp[i] = dp[i-1] + dp[i-2]
    var count = dfs(i - 1) + dfs(i - 2);
    return count;
}

// 爬楼梯:搜索
fn climbingStairsDFS(comptime n: usize) i32 {
    return dfs(n);
}
climbing_stairs_dfs.dart
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFS}

下图展示了暴力搜索形成的递归树。对于问题 \(dp[n]\) ,其递归树的深度为 \(n\) ,时间复杂度为 \(O(2^n)\) 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 \(n\) ,则会陷入漫长的等待之中。

爬楼梯对应递归树

Fig. 爬楼梯对应递归树

实际上,指数阶的时间复杂度是由于「重叠子问题」导致的。例如,问题 \(dp[9]\) 被分解为子问题 \(dp[8]\)\(dp[7]\) ,问题 \(dp[8]\) 被分解为子问题 \(dp[7]\)\(dp[6]\) ,两者都包含子问题 \(dp[7]\) ,而子问题中又包含更小的重叠子问题,子子孙孙无穷尽也,绝大部分计算资源都浪费在这些重叠的问题上。

14.1.2.   方法二:记忆化搜索

为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。具体来说,考虑借助一个数组 mem 来记录每个子问题的解,并在搜索过程中这样做:

  • 当首次计算 \(dp[i]\) 时,我们将其记录至 mem[i] ,以便之后使用;
  • 当再次需要计算 \(dp[i]\) 时,我们便可直接从 mem[i] 中获取结果,从而将重叠子问题剪枝;
climbing_stairs_dfs_mem.java
/* 记忆化搜索 */
int dfs(int i, int[] mem) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // 若存在记录 dp[i] ,则直接返回之
    if (mem[i] != -1)
        return mem[i];
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1, mem) + dfs(i - 2, mem);
    // 记录 dp[i]
    mem[i] = count;
    return count;
}

/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
    // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
    int[] mem = new int[n + 1];
    Arrays.fill(mem, -1);
    return dfs(n, mem);
}
climbing_stairs_dfs_mem.cpp
/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // 若存在记录 dp[i] ,则直接返回之
    if (mem[i] != -1)
        return mem[i];
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1, mem) + dfs(i - 2, mem);
    // 记录 dp[i]
    mem[i] = count;
    return count;
}

/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
    // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
    vector<int> mem(n + 1, -1);
    return dfs(n, mem);
}
climbing_stairs_dfs_mem.py
def dfs(i: int, mem: list[int]) -> int:
    """记忆化搜索"""
    # 已知 dp[1] 和 dp[2] ,返回之
    if i == 1 or i == 2:
        return i
    # 若存在记录 dp[i] ,则直接返回之
    if mem[i] != -1:
        return mem[i]
    # dp[i] = dp[i-1] + dp[i-2]
    count = dfs(i - 1, mem) + dfs(i - 2, mem)
    # 记录 dp[i]
    mem[i] = count
    return count

def climbing_stairs_dfs_mem(n: int) -> int:
    """爬楼梯:记忆化搜索"""
    # mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
    mem = [-1] * (n + 1)
    return dfs(n, mem)
climbing_stairs_dfs_mem.go
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}
climbing_stairs_dfs_mem.js
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}
climbing_stairs_dfs_mem.ts
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}
climbing_stairs_dfs_mem.c
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}
climbing_stairs_dfs_mem.cs
/* 记忆化搜索 */
int dfs(int i, int[] mem) {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 || i == 2)
        return i;
    // 若存在记录 dp[i] ,则直接返回之
    if (mem[i] != -1)
        return mem[i];
    // dp[i] = dp[i-1] + dp[i-2]
    int count = dfs(i - 1, mem) + dfs(i - 2, mem);
    // 记录 dp[i]
    mem[i] = count;
    return count;
}

/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
    // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
    int[] mem = new int[n + 1];
    Array.Fill(mem, -1);
    return dfs(n, mem);
}
climbing_stairs_dfs_mem.swift
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}
climbing_stairs_dfs_mem.zig
// 记忆化搜索
fn dfs(i: usize, mem: []i32) i32 {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (i == 1 or i == 2) {
        return @intCast(i);
    }
    // 若存在记录 dp[i] ,则直接返回之
    if (mem[i] != -1) {
        return mem[i];
    }
    // dp[i] = dp[i-1] + dp[i-2]
    var count = dfs(i - 1, mem) + dfs(i - 2, mem);
    // 记录 dp[i]
    mem[i] = count;
    return count;
}

// 爬楼梯:记忆化搜索
fn climbingStairsDFSMem(comptime n: usize) i32 {
    // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
    var mem = [_]i32{ -1 } ** (n + 1);
    return dfs(n, &mem);
}
climbing_stairs_dfs_mem.dart
[class]{}-[func]{dfs}

[class]{}-[func]{climbingStairsDFSMem}

观察下图,经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 \(O(n)\) ,这是一个巨大的飞跃。实际上,如果不考虑递归带来的额外开销,记忆化搜索解法已经几乎等同于动态规划解法的时间效率。

记忆化搜索对应递归树

Fig. 记忆化搜索对应递归树

14.1.3.   方法三:动态规划

记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点);最终通过回溯将子问题的解逐层收集,得到原问题的解。

我们也可以直接“从底至顶”进行求解,得到标准的动态规划解法:从最小子问题开始,迭代地求解较大子问题,直至得到原问题的解。

由于动态规划不包含回溯过程,因此无需使用递归,而可以直接基于递推实现。我们初始化一个数组 dp 来存储子问题的解,从最小子问题开始,逐步求解较大子问题。在以下代码中,数组 dp 起到了记忆化搜索中数组 mem 相同的记录作用。

climbing_stairs_dp.java
/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
    if (n == 1 || n == 2)
        return n;
    // 初始化 dp 表,用于存储子问题的解
    int[] dp = new int[n + 1];
    // 初始状态:预设最小子问题的解
    dp[1] = 1;
    dp[2] = 2;
    // 状态转移:从较小子问题逐步求解较大子问题
    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
climbing_stairs_dp.cpp
/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
    if (n == 1 || n == 2)
        return n;
    // 初始化 dp 表,用于存储子问题的解
    vector<int> dp(n + 1);
    // 初始状态:预设最小子问题的解
    dp[1] = 1;
    dp[2] = 2;
    // 状态转移:从较小子问题逐步求解较大子问题
    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
climbing_stairs_dp.py
def climbing_stairs_dp(n: int) -> int:
    """爬楼梯:动态规划"""
    if n == 1 or n == 2:
        return n
    # 初始化 dp 表,用于存储子问题的解
    dp = [0] * (n + 1)
    # 初始状态:预设最小子问题的解
    dp[1], dp[2] = 1, 2
    # 状态转移:从较小子问题逐步求解较大子问题
    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]
    return dp[n]
climbing_stairs_dp.go
[class]{}-[func]{climbingStairsDP}
climbing_stairs_dp.js
[class]{}-[func]{climbingStairsDP}
climbing_stairs_dp.ts
[class]{}-[func]{climbingStairsDP}
climbing_stairs_dp.c
[class]{}-[func]{climbingStairsDP}
climbing_stairs_dp.cs
/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
    if (n == 1 || n == 2)
        return n;
    // 初始化 dp 表,用于存储子问题的解
    int[] dp = new int[n + 1];
    // 初始状态:预设最小子问题的解
    dp[1] = 1;
    dp[2] = 2;
    // 状态转移:从较小子问题逐步求解较大子问题
    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
climbing_stairs_dp.swift
[class]{}-[func]{climbingStairsDP}
climbing_stairs_dp.zig
// 爬楼梯:动态规划
fn climbingStairsDP(comptime n: usize) i32 {
    // 已知 dp[1] 和 dp[2] ,返回之
    if (n == 1 or n == 2) {
        return @intCast(n);
    }
    // 初始化 dp 表,用于存储子问题的解
    var dp = [_]i32{-1} ** (n + 1);
    // 初始状态:预设最小子问题的解
    dp[1] = 1;
    dp[2] = 2;
    // 状态转移:从较小子问题逐步求解较大子问题
    for (3..n + 1) |i| {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n];
}
climbing_stairs_dp.dart
[class]{}-[func]{climbingStairsDP}

与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数 \(i\)动态规划的常用术语包括

  • 将数组 dp 称为「\(dp\) 表」,\(dp[i]\) 表示状态 \(i\) 对应子问题的解;
  • 将最小子问题对应的状态(即第 \(1\) , \(2\) 阶楼梯)称为「初始状态」;
  • 将递推公式 \(dp[i] = dp[i-1] + dp[i-2]\) 称为「状态转移方程」;

爬楼梯的动态规划过程

Fig. 爬楼梯的动态规划过程

细心的你可能发现,由于 \(dp[i]\) 只与 \(dp[i-1]\)\(dp[i-2]\) 有关,因此我们无需使用一个数组 dp 来存储所有子问题的解,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 dp 占用的空间,因此空间复杂度从 \(O(n)\) 降低至 \(O(1)\)

climbing_stairs_dp.java
/* 爬楼梯:状态压缩后的动态规划 */
int climbingStairsDPComp(int n) {
    if (n == 1 || n == 2)
        return n;
    int a = 1, b = 2;
    for (int i = 3; i <= n; i++) {
        int tmp = b;
        b = a + b;
        a = tmp;
    }
    return b;
}
climbing_stairs_dp.cpp
/* 爬楼梯:状态压缩后的动态规划 */
int climbingStairsDPComp(int n) {
    if (n == 1 || n == 2)
        return n;
    int a = 1, b = 2;
    for (int i = 3; i <= n; i++) {
        int tmp = b;
        b = a + b;
        a = tmp;
    }
    return b;
}
climbing_stairs_dp.py
def climbing_stairs_dp_comp(n: int) -> int:
    """爬楼梯:状态压缩后的动态规划"""
    if n == 1 or n == 2:
        return n
    a, b = 1, 2
    for _ in range(3, n + 1):
        a, b = b, a + b
    return b
climbing_stairs_dp.go
[class]{}-[func]{climbingStairsDPComp}
climbing_stairs_dp.js
[class]{}-[func]{climbingStairsDPComp}
climbing_stairs_dp.ts
[class]{}-[func]{climbingStairsDPComp}
climbing_stairs_dp.c
[class]{}-[func]{climbingStairsDPComp}
climbing_stairs_dp.cs
/* 爬楼梯:状态压缩后的动态规划 */
int climbingStairsDPComp(int n) {
    if (n == 1 || n == 2)
        return n;
    int a = 1, b = 2;
    for (int i = 3; i <= n; i++) {
        int tmp = b;
        b = a + b;
        a = tmp;
    }
    return b;
}
climbing_stairs_dp.swift
[class]{}-[func]{climbingStairsDPComp}
climbing_stairs_dp.zig
// 爬楼梯:状态压缩后的动态规划
fn climbingStairsDPComp(comptime n: usize) i32 {
    if (n == 1 or n == 2) {
        return @intCast(n);
    }
    var a: i32 = 1;
    var b: i32 = 2;
    for (3..n + 1) |_| {
        var tmp = b;
        b = a + b;
        a = tmp;
    }
    return b;
}
climbing_stairs_dp.dart
[class]{}-[func]{climbingStairsDPComp}

我们将这种空间优化技巧称为「状态压缩」。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。

总的看来,子问题分解是一种通用的算法思路,在分治、动态规划、回溯中各有特点

  • 分治算法将原问题划分为几个独立的子问题,然后递归解决子问题,最后合并子问题的解得到原问题的解。例如,归并排序将长数组不断划分为两个短子数组,再将排序好的子数组合并为排序好的长数组。
  • 动态规划也是将原问题分解为多个子问题,但与分治算法的主要区别是,动态规划中的子问题往往不是相互独立的,原问题的解依赖于子问题的解,而子问题的解又依赖于更小的子问题的解。
  • 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。

评论