/** * File: n_queens.java * Created Time: 2023-05-04 * Author: Krahets (krahets@163.com) */ package chapter_backtracking; import java.util.*; public class n_queens { /* 求解 N 皇后 */ public static List>> nQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 List> state = new ArrayList<>(); for (int i = 0; i < n; i++) { List row = new ArrayList<>(); for (int j = 0; j < n; j++) { row.add("#"); } state.add(row); } boolean[] cols = new boolean[n]; // 记录列是否有皇后 boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线是否有皇后 boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线是否有皇后 List>> res = new ArrayList<>(); backtrack(0, n, state, res, cols, diags1, diags2); return res; } /* 回溯算法:N 皇后 */ public static void backtrack(int row, int n, List> state, List>> res, boolean[] cols, boolean[] diags1, boolean[] diags2) { // 当放置完所有行时,记录解 if (row == n) { List> copyState = new ArrayList<>(); for (List sRow : state) { copyState.add(new ArrayList<>(sRow)); } res.add(copyState); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和副对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后 if (!(cols[col] || diags1[diag1] || diags2[diag2])) { // 尝试:将皇后放置在该格子 state.get(row).set(col, "Q"); cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state.get(row).set(col, "#"); cols[col] = diags1[diag1] = diags2[diag2] = false; } } } public static void main(String[] args) { int n = 4; List>> res = nQueens(n); System.out.println("输入棋盘长宽为 " + n); System.out.println("皇后放置方案共有 " + res.size() + " 种"); for (List> state : res) { System.out.println("--------------------"); for (List row : state) { System.out.println(row); } } } }