8.2. 建堆操作 *¶
如果我们想要根据输入列表生成一个堆,这个过程被称为「建堆」。
8.2.1. 两种建堆方法¶
借助入堆方法实现¶
最直接的方法是借助“元素入堆操作”实现,首先创建一个空堆,然后将列表元素依次添加到堆中。
设元素数量为 \(n\) ,则最后一个元素入堆的时间复杂度为 \(O(\log n)\) 。在依次添加元素时,堆的平均长度为 \(\frac{n}{2}\) ,因此该方法的总体时间复杂度为 \(O(n \log n)\) 。
基于堆化操作实现¶
有趣的是,存在一种更高效的建堆方法,其时间复杂度仅为 \(O(n)\) 。我们先将列表所有元素原封不动添加到堆中,然后迭代地对各个节点执行“从顶至底堆化”。当然,我们不需要对叶节点执行堆化操作,因为它们没有子节点。
// 构造方法,根据输入列表建堆
fn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {
if (self.max_heap != null) return;
self.max_heap = std.ArrayList(T).init(allocator);
// 将列表元素原封不动添加进堆
try self.max_heap.?.appendSlice(nums);
// 堆化除叶节点以外的其他所有节点
var i: usize = parent(self.size() - 1) + 1;
while (i > 0) : (i -= 1) {
try self.siftDown(i - 1);
}
}
8.2.2. 复杂度分析¶
为什么第二种建堆方法的时间复杂度是 \(O(n)\) ?我们来展开推算一下。
- 完全二叉树中,设节点总数为 \(n\) ,则叶节点数量为 \((n + 1) / 2\) ,其中 \(/\) 为向下整除。因此,在排除叶节点后,需要堆化的节点数量为 \((n - 1)/2\) ,复杂度为 \(O(n)\) ;
- 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 \(O(\log n)\) ;
将上述两者相乘,可得到建堆过程的时间复杂度为 \(O(n \log n)\) 。然而,这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的特性。
接下来我们来进行更为详细的计算。为了减小计算难度,我们假设树是一个“完美二叉树”,该假设不会影响计算结果的正确性。设二叉树(即堆)节点数量为 \(n\) ,树高度为 \(h\) 。上文提到,节点堆化最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。
Fig. 完美二叉树的各层节点数量
因此,我们可以将各层的“节点数量 \(\times\) 节点高度”求和,从而得到所有节点的堆化迭代次数的总和。
化简上式需要借助中学的数列知识,先对 \(T(h)\) 乘以 \(2\) ,得到
使用错位相减法,令下式 \(2 T(h)\) 减去上式 \(T(h)\) ,可得
观察上式,发现 \(T(h)\) 是一个等比数列,可直接使用求和公式,得到时间复杂度为
进一步地,高度为 \(h\) 的完美二叉树的节点数量为 \(n = 2^{h+1} - 1\) ,易得复杂度为 \(O(2^h) = O(n)\) 。以上推算表明,输入列表并建堆的时间复杂度为 \(O(n)\) ,非常高效。