--- comments: true --- # 二叉树 「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。类似于链表,二叉树也是以结点为单位存储的,结点包含「值」和两个「指针」。 === "Java" ```java title="" /* 链表结点类 */ class TreeNode { int val; // 结点值 TreeNode left; // 左子结点指针 TreeNode right; // 右子结点指针 TreeNode(int x) { val = x; } } ``` === "C++" ```cpp title="" /* 链表结点结构体 */ struct TreeNode { int val; // 结点值 TreeNode *left; // 左子结点指针 TreeNode *right; // 右子结点指针 TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; ``` === "Python" ```python title="" """ 链表结点类 """ class TreeNode: def __init__(self, val=None, left=None, right=None): self.val = val # 结点值 self.left = left # 左子结点指针 self.right = right # 右子结点指针 ``` === "Go" ```go title="" /* 链表结点类 */ type TreeNode struct { Val int Left *TreeNode Right *TreeNode } /* 结点初始化方法 */ func NewTreeNode(v int) *TreeNode { return &TreeNode{ Left: nil, Right: nil, Val: v, } } ``` === "JavaScript" ```js title="" /* 链表结点类 */ function TreeNode(val, left, right) { this.val = (val === undefined ? 0 : val); // 结点值 this.left = (left === undefined ? null : left); // 左子结点指针 this.right = (right === undefined ? null : right); // 右子结点指针 } ``` === "TypeScript" ```typescript title="" /* 链表结点类 */ class TreeNode { val: number; left: TreeNode | null; right: TreeNode | null; constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { this.val = val === undefined ? 0 : val; // 结点值 this.left = left === undefined ? null : left; // 左子结点指针 this.right = right === undefined ? null : right; // 右子结点指针 } } ``` === "C" ```c title="" ``` === "C#" ```csharp title="" /* 链表结点类 */ class TreeNode { int val; // 结点值 TreeNode? left; // 左子结点指针 TreeNode? right; // 右子结点指针 TreeNode(int x) { val = x; } } ``` === "Swift" ```swift title="" ``` 结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」,并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点,将左子结点以下的树称为该结点的「左子树 Left Subtree」,右子树同理。 除了叶结点外,每个结点都有子结点和子树。例如,若将上图的「结点 2」看作父结点,那么其左子结点和右子结点分别为「结点 4」和「结点 5」,左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。 ![binary_tree_definition](binary_tree.assets/binary_tree_definition.png)
Fig. 子结点与子树
## 二叉树常见术语 二叉树的术语较多,建议尽量理解并记住。后续可能遗忘,可以在需要使用时回来查看确认。 - 「根结点 Root Node」:二叉树最顶层的结点,其没有父结点; - 「叶结点 Leaf Node」:没有子结点的结点,其两个指针都指向 $\text{null}$ ; - 结点所处「层 Level」:从顶至底依次增加,根结点所处层为 1 ; - 结点「度 Degree」:结点的子结点数量。二叉树中,度的范围是 0, 1, 2 ; - 「边 Edge」:连接两个结点的边,即结点指针; - 二叉树「高度」:二叉树中根结点到最远叶结点走过边的数量; - 结点「深度 Depth」 :根结点到该结点走过边的数量; - 结点「高度 Height」:最远叶结点到该结点走过边的数量; ![binary_tree_terminology](binary_tree.assets/binary_tree_terminology.png)Fig. 二叉树的常见术语
!!! tip "高度与深度的定义" 值得注意,我们通常将「高度」和「深度」定义为“走过边的数量”,而有些题目或教材会将其定义为“走过结点的数量”,此时高度或深度都需要 + 1 。 ## 二叉树基本操作 **初始化二叉树**。与链表类似,先初始化结点,再构建引用指向(即指针)。 === "Java" ```java title="binary_tree.java" // 初始化结点 TreeNode n1 = new TreeNode(1); TreeNode n2 = new TreeNode(2); TreeNode n3 = new TreeNode(3); TreeNode n4 = new TreeNode(4); TreeNode n5 = new TreeNode(5); // 构建引用指向(即指针) n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "C++" ```cpp title="binary_tree.cpp" /* 初始化二叉树 */ // 初始化结点 TreeNode* n1 = new TreeNode(1); TreeNode* n2 = new TreeNode(2); TreeNode* n3 = new TreeNode(3); TreeNode* n4 = new TreeNode(4); TreeNode* n5 = new TreeNode(5); // 构建引用指向(即指针) n1->left = n2; n1->right = n3; n2->left = n4; n2->right = n5; ``` === "Python" ```python title="binary_tree.py" """ 初始化二叉树 """ # 初始化节点 n1 = TreeNode(val=1) n2 = TreeNode(val=2) n3 = TreeNode(val=3) n4 = TreeNode(val=4) n5 = TreeNode(val=5) # 构建引用指向(即指针) n1.left = n2 n1.right = n3 n2.left = n4 n2.right = n5 ``` === "Go" ```go title="binary_tree.go" /* 初始化二叉树 */ // 初始化结点 n1 := NewTreeNode(1) n2 := NewTreeNode(2) n3 := NewTreeNode(3) n4 := NewTreeNode(4) n5 := NewTreeNode(5) // 构建引用指向(即指针) n1.Left = n2 n1.Right = n3 n2.Left = n4 n2.Right = n5 ``` === "JavaScript" ```js title="binary_tree.js" /* 初始化二叉树 */ // 初始化结点 let n1 = new TreeNode(1), n2 = new TreeNode(2), n3 = new TreeNode(3), n4 = new TreeNode(4), n5 = new TreeNode(5); // 构建引用指向(即指针) n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "TypeScript" ```typescript title="binary_tree.ts" /* 初始化二叉树 */ // 初始化结点 let n1 = new TreeNode(1), n2 = new TreeNode(2), n3 = new TreeNode(3), n4 = new TreeNode(4), n5 = new TreeNode(5); // 构建引用指向(即指针) n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "C" ```c title="binary_tree.c" ``` === "C#" ```csharp title="binary_tree.cs" /* 初始化二叉树 */ // 初始化结点 TreeNode n1 = new TreeNode(1); TreeNode n2 = new TreeNode(2); TreeNode n3 = new TreeNode(3); TreeNode n4 = new TreeNode(4); TreeNode n5 = new TreeNode(5); // 构建引用指向(即指针) n1.left = n2; n1.right = n3; n2.left = n4; n2.right = n5; ``` === "Swift" ```swift title="binary_tree.swift" ``` **插入与删除结点**。与链表类似,插入与删除结点都可以通过修改指针实现。 ![binary_tree_add_remove](binary_tree.assets/binary_tree_add_remove.png)Fig. 在二叉树中插入与删除结点
=== "Java" ```java title="binary_tree.java" TreeNode P = new TreeNode(0); // 在 n1 -> n2 中间插入结点 P n1.left = P; P.left = n2; // 删除结点 P n1.left = n2; ``` === "C++" ```cpp title="binary_tree.cpp" /* 插入与删除结点 */ TreeNode* P = new TreeNode(0); // 在 n1 -> n2 中间插入结点 P n1->left = P; P->left = n2; // 删除结点 P n1->left = n2; ``` === "Python" ```python title="binary_tree.py" """ 插入与删除结点 """ p = TreeNode(0) # 在 n1 -> n2 中间插入结点 P n1.left = p p.left = n2 # 删除节点 P n1.left = n2 ``` === "Go" ```go title="binary_tree.go" /* 插入与删除结点 */ // 在 n1 -> n2 中间插入结点 P p := NewTreeNode(0) n1.Left = p p.Left = n2 // 删除结点 P n1.Left = n2 ``` === "JavaScript" ```js title="binary_tree.js" /* 插入与删除结点 */ let P = new TreeNode(0); // 在 n1 -> n2 中间插入结点 P n1.left = P; P.left = n2; // 删除结点 P n1.left = n2; ``` === "TypeScript" ```typescript title="binary_tree.ts" /* 插入与删除结点 */ const P = new TreeNode(0); // 在 n1 -> n2 中间插入结点 P n1.left = P; P.left = n2; // 删除结点 P n1.left = n2; ``` === "C" ```c title="binary_tree.c" ``` === "C#" ```csharp title="binary_tree.cs" /* 插入与删除结点 */ TreeNode P = new TreeNode(0); // 在 n1 -> n2 中间插入结点 P n1.left = P; P.left = n2; // 删除结点 P n1.left = n2; ``` === "Swift" ```swift title="binary_tree.swift" ``` !!! note 插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。 ## 常见二叉树类型 ### 完美二叉树 「完美二叉树 Perfect Binary Tree」的所有层的结点都被完全填满。在完美二叉树中,所有结点的度 = 2 ;若树高度 $= h$ ,则结点总数 $= 2^{h+1} - 1$ ,呈标准的指数级关系,反映着自然界中常见的细胞分裂。 !!! tip 在中文社区中,完美二叉树常被称为「满二叉树」,请注意与完满二叉树区分。 ![perfect_binary_tree](binary_tree.assets/perfect_binary_tree.png) ### 完全二叉树 「完全二叉树 Complete Binary Tree」只有最底层的结点未被填满,且最底层结点尽量靠左填充。 **完全二叉树非常适合用数组来表示**。如果按照层序遍历序列的顺序来存储,那么空结点 `null` 一定全部出现在序列的尾部,因此我们就可以不用存储这些 null 了。 ![complete_binary_tree](binary_tree.assets/complete_binary_tree.png) ### 完满二叉树 「完满二叉树 Full Binary Tree」除了叶结点之外,其余所有结点都有两个子结点。 ![full_binary_tree](binary_tree.assets/full_binary_tree.png) ### 平衡二叉树 「平衡二叉树 Balanced Binary Tree」中任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。 ![balanced_binary_tree](binary_tree.assets/balanced_binary_tree.png) ## 二叉树的退化 当二叉树的每层的结点都被填满时,达到「完美二叉树」;而当所有结点都偏向一边时,二叉树退化为「链表」。 - 完美二叉树是一个二叉树的“最佳状态”,可以完全发挥出二叉树“分治”的优势; - 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$ ; ![binary_tree_corner_cases](binary_tree.assets/binary_tree_corner_cases.png)Fig. 二叉树的最佳和最差结构
如下表所示,在最佳和最差结构下,二叉树的叶结点数量、结点总数、高度等达到极大或极小值。