""" File: n_queens.py Created Time: 2023-04-26 Author: krahets (krahets@163.com) """ def backtrack( row: int, n: int, state: list[list[str]], res: list[list[list[str]]], cols: list[bool], diags1: list[bool], diags2: list[bool], ): """Backtracking algorithm: n queens""" # When all rows are placed, record the solution if row == n: res.append([list(row) for row in state]) return # Traverse all columns for col in range(n): # Calculate the main and minor diagonals corresponding to the cell diag1 = row - col + n - 1 diag2 = row + col # Pruning: do not allow queens on the column, main diagonal, or minor diagonal of the cell if not cols[col] and not diags1[diag1] and not diags2[diag2]: # Attempt: place the queen in the cell state[row][col] = "Q" cols[col] = diags1[diag1] = diags2[diag2] = True # Place the next row backtrack(row + 1, n, state, res, cols, diags1, diags2) # Retract: restore the cell to an empty spot state[row][col] = "#" cols[col] = diags1[diag1] = diags2[diag2] = False def n_queens(n: int) -> list[list[list[str]]]: """Solve n queens""" # Initialize an n*n size chessboard, where 'Q' represents the queen and '#' represents an empty spot state = [["#" for _ in range(n)] for _ in range(n)] cols = [False] * n # Record columns with queens diags1 = [False] * (2 * n - 1) # Record main diagonals with queens diags2 = [False] * (2 * n - 1) # Record minor diagonals with queens res = [] backtrack(0, n, state, res, cols, diags1, diags2) return res """Driver Code""" if __name__ == "__main__": n = 4 res = n_queens(n) print(f"Input chessboard dimensions as {n}") print(f"The total number of queen placement solutions is {len(res)}") for state in res: print("--------------------") for row in state: print(row)