9.3 图的遍历¶
图与树的关系
树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例,建议你在学习本章节时融会贯通两者的概念与实现方法。
「图」和「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。
与树类似,图的遍历方式也可分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Traversal」,也称为「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」,简称 BFS 和 DFS。
9.3.1 广度优先遍历¶
广度优先遍历是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体来说,从某个顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。
图:图的广度优先遍历
算法实现¶
BFS 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
- 将遍历起始顶点
startVet
加入队列,并开启循环。 - 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
- 循环步骤
2.
,直到所有顶点被访问完成后结束。
为了防止重复遍历顶点,我们需要借助一个哈希表 visited
来记录哪些节点已被访问。
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
List<Vertex> res = new ArrayList<>();
// 哈希表,用于记录已被访问过的顶点
Set<Vertex> visited = new HashSet<>();
visited.add(startVet);
// 队列用于实现 BFS
Queue<Vertex> que = new LinkedList<>();
que.offer(startVet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (!que.isEmpty()) {
Vertex vet = que.poll(); // 队首顶点出队
res.add(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (Vertex adjVet : graph.adjList.get(vet)) {
if (visited.contains(adjVet))
continue; // 跳过已被访问过的顶点
que.offer(adjVet); // 只入队未访问的顶点
visited.add(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {
// 顶点遍历序列
vector<Vertex *> res;
// 哈希表,用于记录已被访问过的顶点
unordered_set<Vertex *> visited = {startVet};
// 队列用于实现 BFS
queue<Vertex *> que;
que.push(startVet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (!que.empty()) {
Vertex *vet = que.front();
que.pop(); // 队首顶点出队
res.push_back(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (auto adjVet : graph.adjList[vet]) {
if (visited.count(adjVet))
continue; // 跳过已被访问过的顶点
que.push(adjVet); // 只入队未访问的顶点
visited.emplace(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""广度优先遍历 BFS"""
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
# 顶点遍历序列
res = []
# 哈希表,用于记录已被访问过的顶点
visited = set[Vertex]([start_vet])
# 队列用于实现 BFS
que = deque[Vertex]([start_vet])
# 以顶点 vet 为起点,循环直至访问完所有顶点
while len(que) > 0:
vet = que.popleft() # 队首顶点出队
res.append(vet) # 记录访问顶点
# 遍历该顶点的所有邻接顶点
for adj_vet in graph.adj_list[vet]:
if adj_vet in visited:
continue # 跳过已被访问过的顶点
que.append(adj_vet) # 只入队未访问的顶点
visited.add(adj_vet) # 标记该顶点已被访问
# 返回顶点遍历序列
return res
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphBFS(g *graphAdjList, startVet Vertex) []Vertex {
// 顶点遍历序列
res := make([]Vertex, 0)
// 哈希表,用于记录已被访问过的顶点
visited := make(map[Vertex]struct{})
visited[startVet] = struct{}{}
// 队列用于实现 BFS, 使用切片模拟队列
queue := make([]Vertex, 0)
queue = append(queue, startVet)
// 以顶点 vet 为起点,循环直至访问完所有顶点
for len(queue) > 0 {
// 队首顶点出队
vet := queue[0]
queue = queue[1:]
// 记录访问顶点
res = append(res, vet)
// 遍历该顶点的所有邻接顶点
for _, adjVet := range g.adjList[vet] {
_, isExist := visited[adjVet]
// 只入队未访问的顶点
if !isExist {
queue = append(queue, adjVet)
visited[adjVet] = struct{}{}
}
}
}
// 返回顶点遍历序列
return res
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphBFS(graph, startVet) {
// 顶点遍历序列
const res = [];
// 哈希表,用于记录已被访问过的顶点
const visited = new Set();
visited.add(startVet);
// 队列用于实现 BFS
const que = [startVet];
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (que.length) {
const vet = que.shift(); // 队首顶点出队
res.push(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (const adjVet of graph.adjList.get(vet) ?? []) {
if (visited.has(adjVet)) {
continue; // 跳过已被访问过的顶点
}
que.push(adjVet); // 只入队未访问的顶点
visited.add(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
// 顶点遍历序列
const res: Vertex[] = [];
// 哈希表,用于记录已被访问过的顶点
const visited: Set<Vertex> = new Set();
visited.add(startVet);
// 队列用于实现 BFS
const que = [startVet];
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (que.length) {
const vet = que.shift(); // 队首顶点出队
res.push(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (const adjVet of graph.adjList.get(vet) ?? []) {
if (visited.has(adjVet)) {
continue; // 跳过已被访问过的顶点
}
que.push(adjVet); // 只入队未访问
visited.add(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
Vertex **graphBFS(graphAdjList *t, Vertex *startVet) {
// 顶点遍历序列
Vertex **res = (Vertex **)malloc(sizeof(Vertex *) * t->size);
memset(res, 0, sizeof(Vertex *) * t->size);
// 队列用于实现 BFS
queue *que = newQueue(t->size);
// 哈希表,用于记录已被访问过的顶点
hashTable *visited = newHash(t->size);
int resIndex = 0;
queuePush(que, startVet); // 将第一个元素入队
hashMark(visited, startVet->pos); // 标记第一个入队的顶点
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (que->head < que->tail) {
// 遍历该顶点的边链表,将所有与该顶点有连接的,并且未被标记的顶点入队
Node *n = queueTop(que)->linked->head->next;
while (n != 0) {
// 查询哈希表,若该索引的顶点已入队,则跳过,否则入队并标记
if (hashQuery(visited, n->val->pos) == 1) {
n = n->next;
continue; // 跳过已被访问过的顶点
}
queuePush(que, n->val); // 只入队未访问的顶点
hashMark(visited, n->val->pos); // 标记该顶点已被访问
}
// 队首元素存入数组
res[resIndex] = queueTop(que); // 队首顶点加入顶点遍历序列
resIndex++;
queuePop(que); // 队首元素出队
}
// 释放内存
freeQueue(que);
freeHash(visited);
resIndex = 0;
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
List<Vertex> res = new List<Vertex>();
// 哈希表,用于记录已被访问过的顶点
HashSet<Vertex> visited = new HashSet<Vertex>() { startVet };
// 队列用于实现 BFS
Queue<Vertex> que = new Queue<Vertex>();
que.Enqueue(startVet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (que.Count > 0) {
Vertex vet = que.Dequeue(); // 队首顶点出队
res.Add(vet); // 记录访问顶点
foreach (Vertex adjVet in graph.adjList[vet]) {
if (visited.Contains(adjVet)) {
continue; // 跳过已被访问过的顶点
}
que.Enqueue(adjVet); // 只入队未访问的顶点
visited.Add(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
// 顶点遍历序列
var res: [Vertex] = []
// 哈希表,用于记录已被访问过的顶点
var visited: Set<Vertex> = [startVet]
// 队列用于实现 BFS
var que: [Vertex] = [startVet]
// 以顶点 vet 为起点,循环直至访问完所有顶点
while !que.isEmpty {
let vet = que.removeFirst() // 队首顶点出队
res.append(vet) // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for adjVet in graph.adjList[vet] ?? [] {
if visited.contains(adjVet) {
continue // 跳过已被访问过的顶点
}
que.append(adjVet) // 只入队未访问的顶点
visited.insert(adjVet) // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res
}
/* 广度优先遍历 BFS */
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
// 顶点遍历序列
List<Vertex> res = [];
// 哈希表,用于记录已被访问过的顶点
Set<Vertex> visited = {};
visited.add(startVet);
// 队列用于实现 BFS
Queue<Vertex> que = Queue();
que.add(startVet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while (que.isNotEmpty) {
Vertex vet = que.removeFirst(); // 队首顶点出队
res.add(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
for (Vertex adjVet in graph.adjList[vet]!) {
if (visited.contains(adjVet)) {
continue; // 跳过已被访问过的顶点
}
que.add(adjVet); // 只入队未访问的顶点
visited.add(adjVet); // 标记该顶点已被访问
}
}
// 返回顶点遍历序列
return res;
}
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
fn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// 顶点遍历序列
let mut res = vec![];
// 哈希表,用于记录已被访问过的顶点
let mut visited = HashSet::new();
visited.insert(start_vet);
// 队列用于实现 BFS
let mut que = VecDeque::new();
que.push_back(start_vet);
// 以顶点 vet 为起点,循环直至访问完所有顶点
while !que.is_empty() {
let vet = que.pop_front().unwrap(); // 队首顶点出队
res.push(vet); // 记录访问顶点
// 遍历该顶点的所有邻接顶点
if let Some(adj_vets) = graph.adj_list.get(&vet) {
for &adj_vet in adj_vets {
if visited.contains(&adj_vet) {
continue; // 跳过已被访问过的顶点
}
que.push_back(adj_vet); // 只入队未访问的顶点
visited.insert(adj_vet); // 标记该顶点已被访问
}
}
}
// 返回顶点遍历序列
res
}
代码相对抽象,建议对照以下动画图示来加深理解。
图:图的广度优先遍历步骤
广度优先遍历的序列是否唯一?
不唯一。广度优先遍历只要求按“由近及远”的顺序遍历,而多个相同距离的顶点的遍历顺序是允许被任意打乱的。以上图为例,顶点 \(1\) , \(3\) 的访问顺序可以交换、顶点 \(2\) , \(4\) , \(6\) 的访问顺序也可以任意交换。
复杂度分析¶
时间复杂度: 所有顶点都会入队并出队一次,使用 \(O(|V|)\) 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。
空间复杂度: 列表 res
,哈希表 visited
,队列 que
中的顶点数量最多为 \(|V|\) ,使用 \(O(|V|)\) 空间。
9.3.2 深度优先遍历¶
深度优先遍历是一种优先走到底、无路可走再回头的遍历方式。具体地,从某个顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。
图:图的深度优先遍历
算法实现¶
这种“走到尽头 + 回溯”的算法形式通常基于递归来实现。与 BFS 类似,在 DFS 中我们也需要借助一个哈希表 visited
来记录已被访问的顶点,以避免重复访问顶点。
/* 深度优先遍历 DFS 辅助函数 */
void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
res.add(vet); // 记录访问顶点
visited.add(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for (Vertex adjVet : graph.adjList.get(vet)) {
if (visited.contains(adjVet))
continue; // 跳过已被访问过的顶点
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
List<Vertex> res = new ArrayList<>();
// 哈希表,用于记录已被访问过的顶点
Set<Vertex> visited = new HashSet<>();
dfs(graph, visited, res, startVet);
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
void dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {
res.push_back(vet); // 记录访问顶点
visited.emplace(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for (Vertex *adjVet : graph.adjList[vet]) {
if (visited.count(adjVet))
continue; // 跳过已被访问过的顶点
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {
// 顶点遍历序列
vector<Vertex *> res;
// 哈希表,用于记录已被访问过的顶点
unordered_set<Vertex *> visited;
dfs(graph, visited, res, startVet);
return res;
}
def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
"""深度优先遍历 DFS 辅助函数"""
res.append(vet) # 记录访问顶点
visited.add(vet) # 标记该顶点已被访问
# 遍历该顶点的所有邻接顶点
for adjVet in graph.adj_list[vet]:
if adjVet in visited:
continue # 跳过已被访问过的顶点
# 递归访问邻接顶点
dfs(graph, visited, res, adjVet)
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
"""深度优先遍历 DFS"""
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
# 顶点遍历序列
res = []
# 哈希表,用于记录已被访问过的顶点
visited = set[Vertex]()
dfs(graph, visited, res, start_vet)
return res
/* 深度优先遍历 DFS 辅助函数 */
func dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {
// append 操作会返回新的的引用,必须让原引用重新赋值为新slice的引用
*res = append(*res, vet)
visited[vet] = struct{}{}
// 遍历该顶点的所有邻接顶点
for _, adjVet := range g.adjList[vet] {
_, isExist := visited[adjVet]
// 递归访问邻接顶点
if !isExist {
dfs(g, visited, res, adjVet)
}
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(g *graphAdjList, startVet Vertex) []Vertex {
// 顶点遍历序列
res := make([]Vertex, 0)
// 哈希表,用于记录已被访问过的顶点
visited := make(map[Vertex]struct{})
dfs(g, visited, &res, startVet)
// 返回顶点遍历序列
return res
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function dfs(graph, visited, res, vet) {
res.push(vet); // 记录访问顶点
visited.add(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for (const adjVet of graph.adjList.get(vet)) {
if (visited.has(adjVet)) {
continue; // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphDFS(graph, startVet) {
// 顶点遍历序列
const res = [];
// 哈希表,用于记录已被访问过的顶点
const visited = new Set();
dfs(graph, visited, res, startVet);
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
function dfs(
graph: GraphAdjList,
visited: Set<Vertex>,
res: Vertex[],
vet: Vertex
): void {
res.push(vet); // 记录访问顶点
visited.add(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for (const adjVet of graph.adjList.get(vet)) {
if (visited.has(adjVet)) {
continue; // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
// 顶点遍历序列
const res: Vertex[] = [];
// 哈希表,用于记录已被访问过的顶点
const visited: Set<Vertex> = new Set();
dfs(graph, visited, res, startVet);
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
int resIndex = 0;
void dfs(graphAdjList *graph, hashTable *visited, Vertex *vet, Vertex **res) {
if (hashQuery(visited, vet->pos) == 1) {
return; // 跳过已被访问过的顶点
}
hashMark(visited, vet->pos); // 标记顶点并将顶点存入数组
res[resIndex] = vet; // 将顶点存入数组
resIndex++;
// 遍历该顶点链表
Node *n = vet->linked->head->next;
while (n != 0) {
// 递归访问邻接顶点
dfs(graph, visited, n->val, res);
n = n->next;
}
return;
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
Vertex **graphDFS(graphAdjList *graph, Vertex *startVet) {
// 顶点遍历序列
Vertex **res = (Vertex **)malloc(sizeof(Vertex *) * graph->size);
memset(res, 0, sizeof(Vertex *) * graph->size);
// 哈希表,用于记录已被访问过的顶点
hashTable *visited = newHash(graph->size);
dfs(graph, visited, startVet, res);
// 释放哈希表内存并将数组索引归零
freeHash(visited);
resIndex = 0;
// 返回遍历数组
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
void dfs(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {
res.Add(vet); // 记录访问顶点
visited.Add(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
foreach (Vertex adjVet in graph.adjList[vet]) {
if (visited.Contains(adjVet)) {
continue; // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
List<Vertex> res = new List<Vertex>();
// 哈希表,用于记录已被访问过的顶点
HashSet<Vertex> visited = new HashSet<Vertex>();
dfs(graph, visited, res, startVet);
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
func dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {
res.append(vet) // 记录访问顶点
visited.insert(vet) // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for adjVet in graph.adjList[vet] ?? [] {
if visited.contains(adjVet) {
continue // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
// 顶点遍历序列
var res: [Vertex] = []
// 哈希表,用于记录已被访问过的顶点
var visited: Set<Vertex> = []
dfs(graph: graph, visited: &visited, res: &res, vet: startVet)
return res
}
/* 深度优先遍历 DFS 辅助函数 */
void dfs(
GraphAdjList graph,
Set<Vertex> visited,
List<Vertex> res,
Vertex vet,
) {
res.add(vet); // 记录访问顶点
visited.add(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
for (Vertex adjVet in graph.adjList[vet]!) {
if (visited.contains(adjVet)) {
continue; // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph, visited, res, adjVet);
}
}
/* 深度优先遍历 DFS */
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
List<Vertex> res = [];
// 哈希表,用于记录已被访问过的顶点
Set<Vertex> visited = {};
dfs(graph, visited, res, startVet);
return res;
}
/* 深度优先遍历 DFS 辅助函数 */
fn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {
res.push(vet); // 记录访问顶点
visited.insert(vet); // 标记该顶点已被访问
// 遍历该顶点的所有邻接顶点
if let Some(adj_vets) = graph.adj_list.get(&vet) {
for &adj_vet in adj_vets {
if visited.contains(&adj_vet) {
continue; // 跳过已被访问过的顶点
}
// 递归访问邻接顶点
dfs(graph, visited, res, adj_vet);
}
}
}
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
fn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// 顶点遍历序列
let mut res = vec![];
// 哈希表,用于记录已被访问过的顶点
let mut visited = HashSet::new();
dfs(&graph, &mut visited, &mut res, start_vet);
res
}
深度优先遍历的算法流程如下图所示,其中:
- 直虚线代表向下递推,表示开启了一个新的递归方法来访问新顶点。
- 曲虚线代表向上回溯,表示此递归方法已经返回,回溯到了开启此递归方法的位置。
为了加深理解,建议将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。
图:图的深度优先遍历步骤
深度优先遍历的序列是否唯一?
与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。
以树的遍历为例,“根 \(\rightarrow\) 左 \(\rightarrow\) 右”、“左 \(\rightarrow\) 根 \(\rightarrow\) 右”、“左 \(\rightarrow\) 右 \(\rightarrow\) 根”分别对应前序、中序、后序遍历,它们展示了三种不同的遍历优先级,然而这三者都属于深度优先遍历。
复杂度分析¶
时间复杂度: 所有顶点都会被访问 \(1\) 次,使用 \(O(|V|)\) 时间;所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。
空间复杂度: 列表 res
,哈希表 visited
顶点数量最多为 \(|V|\) ,递归深度最大为 \(|V|\) ,因此使用 \(O(|V|)\) 空间。