""" File: knapsack.py Created Time: 2023-07-03 Author: krahets (krahets@163.com) """ def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int: """0-1 Knapsack: Brute force search""" # If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 or c == 0: return 0 # If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i - 1] > c: return knapsack_dfs(wgt, val, i - 1, c) # Calculate the maximum value of not putting in and putting in item i no = knapsack_dfs(wgt, val, i - 1, c) yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1] # Return the greater value of the two options return max(no, yes) def knapsack_dfs_mem( wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int ) -> int: """0-1 Knapsack: Memoized search""" # If all items have been chosen or the knapsack has no remaining capacity, return value 0 if i == 0 or c == 0: return 0 # If there is a record, return it if mem[i][c] != -1: return mem[i][c] # If exceeding the knapsack capacity, can only choose not to put it in the knapsack if wgt[i - 1] > c: return knapsack_dfs_mem(wgt, val, mem, i - 1, c) # Calculate the maximum value of not putting in and putting in item i no = knapsack_dfs_mem(wgt, val, mem, i - 1, c) yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1] # Record and return the greater value of the two options mem[i][c] = max(no, yes) return mem[i][c] def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int: """0-1 Knapsack: Dynamic programming""" n = len(wgt) # Initialize dp table dp = [[0] * (cap + 1) for _ in range(n + 1)] # State transition for i in range(1, n + 1): for c in range(1, cap + 1): if wgt[i - 1] > c: # If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c] else: # The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]) return dp[n][cap] def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int: """0-1 Knapsack: Space-optimized dynamic programming""" n = len(wgt) # Initialize dp table dp = [0] * (cap + 1) # State transition for i in range(1, n + 1): # Traverse in reverse order for c in range(cap, 0, -1): if wgt[i - 1] > c: # If exceeding the knapsack capacity, do not choose item i dp[c] = dp[c] else: # The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]) return dp[cap] """Driver Code""" if __name__ == "__main__": wgt = [10, 20, 30, 40, 50] val = [50, 120, 150, 210, 240] cap = 50 n = len(wgt) # Brute force search res = knapsack_dfs(wgt, val, n, cap) print(f"The maximum item value without exceeding knapsack capacity is {res}") # Memoized search mem = [[-1] * (cap + 1) for _ in range(n + 1)] res = knapsack_dfs_mem(wgt, val, mem, n, cap) print(f"The maximum item value without exceeding knapsack capacity is {res}") # Dynamic programming res = knapsack_dp(wgt, val, cap) print(f"The maximum item value without exceeding knapsack capacity is {res}") # Space-optimized dynamic programming res = knapsack_dp_comp(wgt, val, cap) print(f"The maximum item value without exceeding knapsack capacity is {res}")