--- comments: true --- # 13.3   Subset sum problem ## 13.3.1   Case without duplicate elements !!! question Given an array of positive integers `nums` and a target positive integer `target`, find all possible combinations such that the sum of the elements in the combination equals `target`. The given array has no duplicate elements, and each element can be chosen multiple times. Please return these combinations as a list, which should not contain duplicate combinations. For example, for the input set $\{3, 4, 5\}$ and target integer $9$, the solutions are $\{3, 3, 3\}, \{4, 5\}$. Note the following two points. - Elements in the input set can be chosen an unlimited number of times. - Subsets do not distinguish the order of elements, for example $\{4, 5\}$ and $\{5, 4\}$ are the same subset. ### 1.   Reference permutation solution Similar to the permutation problem, we can imagine the generation of subsets as a series of choices, updating the "element sum" in real-time during the choice process. When the element sum equals `target`, the subset is recorded in the result list. Unlike the permutation problem, **elements in this problem can be chosen an unlimited number of times**, thus there is no need to use a `selected` boolean list to record whether an element has been chosen. We can make minor modifications to the permutation code to initially solve the problem: === "Python" ```python title="subset_sum_i_naive.py" def backtrack( state: list[int], target: int, total: int, choices: list[int], res: list[list[int]], ): """Backtracking algorithm: Subset Sum I""" # When the subset sum equals target, record the solution if total == target: res.append(list(state)) return # Traverse all choices for i in range(len(choices)): # Pruning: if the subset sum exceeds target, skip that choice if total + choices[i] > target: continue # Attempt: make a choice, update elements and total state.append(choices[i]) # Proceed to the next round of selection backtrack(state, target, total + choices[i], choices, res) # Retract: undo the choice, restore to the previous state state.pop() def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]: """Solve Subset Sum I (including duplicate subsets)""" state = [] # State (subset) total = 0 # Subset sum res = [] # Result list (subset list) backtrack(state, target, total, nums, res) return res ``` === "C++" ```cpp title="subset_sum_i_naive.cpp" /* Backtracking algorithm: Subset Sum I */ void backtrack(vector &state, int target, int total, vector &choices, vector> &res) { // When the subset sum equals target, record the solution if (total == target) { res.push_back(state); return; } // Traverse all choices for (size_t i = 0; i < choices.size(); i++) { // Pruning: if the subset sum exceeds target, skip that choice if (total + choices[i] > target) { continue; } // Attempt: make a choice, update elements and total state.push_back(choices[i]); // Proceed to the next round of selection backtrack(state, target, total + choices[i], choices, res); // Retract: undo the choice, restore to the previous state state.pop_back(); } } /* Solve Subset Sum I (including duplicate subsets) */ vector> subsetSumINaive(vector &nums, int target) { vector state; // State (subset) int total = 0; // Subset sum vector> res; // Result list (subset list) backtrack(state, target, total, nums, res); return res; } ``` === "Java" ```java title="subset_sum_i_naive.java" /* Backtracking algorithm: Subset Sum I */ void backtrack(List state, int target, int total, int[] choices, List> res) { // When the subset sum equals target, record the solution if (total == target) { res.add(new ArrayList<>(state)); return; } // Traverse all choices for (int i = 0; i < choices.length; i++) { // Pruning: if the subset sum exceeds target, skip that choice if (total + choices[i] > target) { continue; } // Attempt: make a choice, update elements and total state.add(choices[i]); // Proceed to the next round of selection backtrack(state, target, total + choices[i], choices, res); // Retract: undo the choice, restore to the previous state state.remove(state.size() - 1); } } /* Solve Subset Sum I (including duplicate subsets) */ List> subsetSumINaive(int[] nums, int target) { List state = new ArrayList<>(); // State (subset) int total = 0; // Subset sum List> res = new ArrayList<>(); // Result list (subset list) backtrack(state, target, total, nums, res); return res; } ``` === "C#" ```csharp title="subset_sum_i_naive.cs" [class]{subset_sum_i_naive}-[func]{Backtrack} [class]{subset_sum_i_naive}-[func]{SubsetSumINaive} ``` === "Go" ```go title="subset_sum_i_naive.go" [class]{}-[func]{backtrackSubsetSumINaive} [class]{}-[func]{subsetSumINaive} ``` === "Swift" ```swift title="subset_sum_i_naive.swift" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "JS" ```javascript title="subset_sum_i_naive.js" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "TS" ```typescript title="subset_sum_i_naive.ts" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "Dart" ```dart title="subset_sum_i_naive.dart" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "Rust" ```rust title="subset_sum_i_naive.rs" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i_naive} ``` === "C" ```c title="subset_sum_i_naive.c" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "Kotlin" ```kotlin title="subset_sum_i_naive.kt" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` === "Ruby" ```ruby title="subset_sum_i_naive.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i_naive} ``` === "Zig" ```zig title="subset_sum_i_naive.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` Inputting the array $[3, 4, 5]$ and target element $9$ into the above code yields the results $[3, 3, 3], [4, 5], [5, 4]$. **Although it successfully finds all subsets with a sum of $9$, it includes the duplicate subset $[4, 5]$ and $[5, 4]$**. This is because the search process distinguishes the order of choices, however, subsets do not distinguish the choice order. As shown in Figure 13-10, choosing $4$ before $5$ and choosing $5$ before $4$ are different branches, but correspond to the same subset. ![Subset search and pruning out of bounds](subset_sum_problem.assets/subset_sum_i_naive.png){ class="animation-figure" }

Figure 13-10   Subset search and pruning out of bounds

To eliminate duplicate subsets, **a straightforward idea is to deduplicate the result list**. However, this method is very inefficient for two reasons. - When there are many array elements, especially when `target` is large, the search process produces a large number of duplicate subsets. - Comparing subsets (arrays) for differences is very time-consuming, requiring arrays to be sorted first, then comparing the differences of each element in the arrays. ### 2.   Duplicate subset pruning **We consider deduplication during the search process through pruning**. Observing Figure 13-11, duplicate subsets are generated when choosing array elements in different orders, for example in the following situations. 1. When choosing $3$ in the first round and $4$ in the second round, all subsets containing these two elements are generated, denoted as $[3, 4, \dots]$. 2. Later, when $4$ is chosen in the first round, **the second round should skip $3$** because the subset $[4, 3, \dots]$ generated by this choice completely duplicates the subset from step `1.`. In the search process, each layer's choices are tried one by one from left to right, so the more to the right a branch is, the more it is pruned. 1. First two rounds choose $3$ and $5$, generating subset $[3, 5, \dots]$. 2. First two rounds choose $4$ and $5$, generating subset $[4, 5, \dots]$. 3. If $5$ is chosen in the first round, **then the second round should skip $3$ and $4$** as the subsets $[5, 3, \dots]$ and $[5, 4, \dots]$ completely duplicate the subsets described in steps `1.` and `2.`. ![Different choice orders leading to duplicate subsets](subset_sum_problem.assets/subset_sum_i_pruning.png){ class="animation-figure" }

Figure 13-11   Different choice orders leading to duplicate subsets

In summary, given the input array $[x_1, x_2, \dots, x_n]$, the choice sequence in the search process should be $[x_{i_1}, x_{i_2}, \dots, x_{i_m}]$, which needs to satisfy $i_1 \leq i_2 \leq \dots \leq i_m$. **Any choice sequence that does not meet this condition will cause duplicates and should be pruned**. ### 3.   Code implementation To implement this pruning, we initialize the variable `start`, which indicates the starting point for traversal. **After making the choice $x_{i}$, set the next round to start from index $i$**. This will ensure the choice sequence satisfies $i_1 \leq i_2 \leq \dots \leq i_m$, thereby ensuring the uniqueness of the subsets. Besides, we have made the following two optimizations to the code. - Before starting the search, sort the array `nums`. In the traversal of all choices, **end the loop directly when the subset sum exceeds `target`** as subsequent elements are larger and their subset sum will definitely exceed `target`. - Eliminate the element sum variable `total`, **by performing subtraction on `target` to count the element sum**. When `target` equals $0$, record the solution. === "Python" ```python title="subset_sum_i.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """Backtracking algorithm: Subset Sum I""" # When the subset sum equals target, record the solution if target == 0: res.append(list(state)) return # Traverse all choices # Pruning two: start traversing from start to avoid generating duplicate subsets for i in range(start, len(choices)): # Pruning one: if the subset sum exceeds target, end the loop immediately # This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if target - choices[i] < 0: break # Attempt: make a choice, update target, start state.append(choices[i]) # Proceed to the next round of selection backtrack(state, target - choices[i], choices, i, res) # Retract: undo the choice, restore to the previous state state.pop() def subset_sum_i(nums: list[int], target: int) -> list[list[int]]: """Solve Subset Sum I""" state = [] # State (subset) nums.sort() # Sort nums start = 0 # Start point for traversal res = [] # Result list (subset list) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_i.cpp" /* Backtracking algorithm: Subset Sum I */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // When the subset sum equals target, record the solution if (target == 0) { res.push_back(state); return; } // Traverse all choices // Pruning two: start traversing from start to avoid generating duplicate subsets for (int i = start; i < choices.size(); i++) { // Pruning one: if the subset sum exceeds target, end the loop immediately // This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if (target - choices[i] < 0) { break; } // Attempt: make a choice, update target, start state.push_back(choices[i]); // Proceed to the next round of selection backtrack(state, target - choices[i], choices, i, res); // Retract: undo the choice, restore to the previous state state.pop_back(); } } /* Solve Subset Sum I */ vector> subsetSumI(vector &nums, int target) { vector state; // State (subset) sort(nums.begin(), nums.end()); // Sort nums int start = 0; // Start point for traversal vector> res; // Result list (subset list) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_i.java" /* Backtracking algorithm: Subset Sum I */ void backtrack(List state, int target, int[] choices, int start, List> res) { // When the subset sum equals target, record the solution if (target == 0) { res.add(new ArrayList<>(state)); return; } // Traverse all choices // Pruning two: start traversing from start to avoid generating duplicate subsets for (int i = start; i < choices.length; i++) { // Pruning one: if the subset sum exceeds target, end the loop immediately // This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if (target - choices[i] < 0) { break; } // Attempt: make a choice, update target, start state.add(choices[i]); // Proceed to the next round of selection backtrack(state, target - choices[i], choices, i, res); // Retract: undo the choice, restore to the previous state state.remove(state.size() - 1); } } /* Solve Subset Sum I */ List> subsetSumI(int[] nums, int target) { List state = new ArrayList<>(); // State (subset) Arrays.sort(nums); // Sort nums int start = 0; // Start point for traversal List> res = new ArrayList<>(); // Result list (subset list) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_i.cs" [class]{subset_sum_i}-[func]{Backtrack} [class]{subset_sum_i}-[func]{SubsetSumI} ``` === "Go" ```go title="subset_sum_i.go" [class]{}-[func]{backtrackSubsetSumI} [class]{}-[func]{subsetSumI} ``` === "Swift" ```swift title="subset_sum_i.swift" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "JS" ```javascript title="subset_sum_i.js" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "TS" ```typescript title="subset_sum_i.ts" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "Dart" ```dart title="subset_sum_i.dart" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "Rust" ```rust title="subset_sum_i.rs" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i} ``` === "C" ```c title="subset_sum_i.c" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "Kotlin" ```kotlin title="subset_sum_i.kt" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` === "Ruby" ```ruby title="subset_sum_i.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i} ``` === "Zig" ```zig title="subset_sum_i.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` Figure 13-12 shows the overall backtracking process after inputting the array $[3, 4, 5]$ and target element $9$ into the above code. ![Subset sum I backtracking process](subset_sum_problem.assets/subset_sum_i.png){ class="animation-figure" }

Figure 13-12   Subset sum I backtracking process

## 13.3.2   Considering cases with duplicate elements !!! question Given an array of positive integers `nums` and a target positive integer `target`, find all possible combinations such that the sum of the elements in the combination equals `target`. **The given array may contain duplicate elements, and each element can only be chosen once**. Please return these combinations as a list, which should not contain duplicate combinations. Compared to the previous question, **this question's input array may contain duplicate elements**, introducing new problems. For example, given the array $[4, \hat{4}, 5]$ and target element $9$, the existing code's output results in $[4, 5], [\hat{4}, 5]$, resulting in duplicate subsets. **The reason for this duplication is that equal elements are chosen multiple times in a certain round**. In Figure 13-13, the first round has three choices, two of which are $4$, generating two duplicate search branches, thus outputting duplicate subsets; similarly, the two $4$s in the second round also produce duplicate subsets. ![Duplicate subsets caused by equal elements](subset_sum_problem.assets/subset_sum_ii_repeat.png){ class="animation-figure" }

Figure 13-13   Duplicate subsets caused by equal elements

### 1.   Equal element pruning To solve this issue, **we need to limit equal elements to being chosen only once per round**. The implementation is quite clever: since the array is sorted, equal elements are adjacent. This means that in a certain round of choices, if the current element is equal to its left-hand element, it means it has already been chosen, so skip the current element directly. At the same time, **this question stipulates that each array element can only be chosen once**. Fortunately, we can also use the variable `start` to meet this constraint: after making the choice $x_{i}$, set the next round to start from index $i + 1$ going forward. This not only eliminates duplicate subsets but also avoids repeated selection of elements. ### 2.   Code implementation === "Python" ```python title="subset_sum_ii.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """Backtracking algorithm: Subset Sum II""" # When the subset sum equals target, record the solution if target == 0: res.append(list(state)) return # Traverse all choices # Pruning two: start traversing from start to avoid generating duplicate subsets # Pruning three: start traversing from start to avoid repeatedly selecting the same element for i in range(start, len(choices)): # Pruning one: if the subset sum exceeds target, end the loop immediately # This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if target - choices[i] < 0: break # Pruning four: if the element equals the left element, it indicates that the search branch is repeated, skip it if i > start and choices[i] == choices[i - 1]: continue # Attempt: make a choice, update target, start state.append(choices[i]) # Proceed to the next round of selection backtrack(state, target - choices[i], choices, i + 1, res) # Retract: undo the choice, restore to the previous state state.pop() def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]: """Solve Subset Sum II""" state = [] # State (subset) nums.sort() # Sort nums start = 0 # Start point for traversal res = [] # Result list (subset list) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_ii.cpp" /* Backtracking algorithm: Subset Sum II */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // When the subset sum equals target, record the solution if (target == 0) { res.push_back(state); return; } // Traverse all choices // Pruning two: start traversing from start to avoid generating duplicate subsets // Pruning three: start traversing from start to avoid repeatedly selecting the same element for (int i = start; i < choices.size(); i++) { // Pruning one: if the subset sum exceeds target, end the loop immediately // This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if (target - choices[i] < 0) { break; } // Pruning four: if the element equals the left element, it indicates that the search branch is repeated, skip it if (i > start && choices[i] == choices[i - 1]) { continue; } // Attempt: make a choice, update target, start state.push_back(choices[i]); // Proceed to the next round of selection backtrack(state, target - choices[i], choices, i + 1, res); // Retract: undo the choice, restore to the previous state state.pop_back(); } } /* Solve Subset Sum II */ vector> subsetSumII(vector &nums, int target) { vector state; // State (subset) sort(nums.begin(), nums.end()); // Sort nums int start = 0; // Start point for traversal vector> res; // Result list (subset list) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_ii.java" /* Backtracking algorithm: Subset Sum II */ void backtrack(List state, int target, int[] choices, int start, List> res) { // When the subset sum equals target, record the solution if (target == 0) { res.add(new ArrayList<>(state)); return; } // Traverse all choices // Pruning two: start traversing from start to avoid generating duplicate subsets // Pruning three: start traversing from start to avoid repeatedly selecting the same element for (int i = start; i < choices.length; i++) { // Pruning one: if the subset sum exceeds target, end the loop immediately // This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if (target - choices[i] < 0) { break; } // Pruning four: if the element equals the left element, it indicates that the search branch is repeated, skip it if (i > start && choices[i] == choices[i - 1]) { continue; } // Attempt: make a choice, update target, start state.add(choices[i]); // Proceed to the next round of selection backtrack(state, target - choices[i], choices, i + 1, res); // Retract: undo the choice, restore to the previous state state.remove(state.size() - 1); } } /* Solve Subset Sum II */ List> subsetSumII(int[] nums, int target) { List state = new ArrayList<>(); // State (subset) Arrays.sort(nums); // Sort nums int start = 0; // Start point for traversal List> res = new ArrayList<>(); // Result list (subset list) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_ii.cs" [class]{subset_sum_ii}-[func]{Backtrack} [class]{subset_sum_ii}-[func]{SubsetSumII} ``` === "Go" ```go title="subset_sum_ii.go" [class]{}-[func]{backtrackSubsetSumII} [class]{}-[func]{subsetSumII} ``` === "Swift" ```swift title="subset_sum_ii.swift" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "JS" ```javascript title="subset_sum_ii.js" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "TS" ```typescript title="subset_sum_ii.ts" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "Dart" ```dart title="subset_sum_ii.dart" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "Rust" ```rust title="subset_sum_ii.rs" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_ii} ``` === "C" ```c title="subset_sum_ii.c" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "Kotlin" ```kotlin title="subset_sum_ii.kt" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` === "Ruby" ```ruby title="subset_sum_ii.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_ii} ``` === "Zig" ```zig title="subset_sum_ii.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` Figure 13-14 shows the backtracking process for the array $[4, 4, 5]$ and target element $9$, including four types of pruning operations. Please combine the illustration with the code comments to understand the entire search process and how each type of pruning operation works. ![Subset sum II backtracking process](subset_sum_problem.assets/subset_sum_ii.png){ class="animation-figure" }

Figure 13-14   Subset sum II backtracking process