10.3. 哈希优化策略¶
在算法题中,我们常通过将线性查找替换为哈希查找来降低算法的时间复杂度。我们借助一个算法题来加深理解。
Question
给定一个整数数组 nums
和一个目标元素 target
,请在数组中搜索“和”为 target
的两个元素,并返回它们的数组索引。返回任意一个解即可。
10.3.1. 线性查找:以时间换空间¶
考虑直接遍历所有可能的组合。开启一个两层循环,在每轮中判断两个整数的和是否为 target
,若是,则返回它们的索引。
Fig. 线性查找求解两数之和
two_sum.c
/* 方法一:暴力枚举 */
int *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {
for (int i = 0; i < numsSize; ++i) {
for (int j = i + 1; j < numsSize; ++j) {
if (nums[i] + nums[j] == target) {
int *res = malloc(sizeof(int) * 2);
res[0] = i, res[1] = j;
*returnSize = 2;
return res;
}
}
}
*returnSize = 0;
return NULL;
}
two_sum.zig
// 方法一:暴力枚举
fn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {
var size: usize = nums.len;
var i: usize = 0;
// 两层循环,时间复杂度 O(n^2)
while (i < size - 1) : (i += 1) {
var j = i + 1;
while (j < size) : (j += 1) {
if (nums[i] + nums[j] == target) {
return [_]i32{@intCast(i), @intCast(j)};
}
}
}
return null;
}
此方法的时间复杂度为 \(O(n^2)\) ,空间复杂度为 \(O(1)\) ,在大数据量下非常耗时。
10.3.2. 哈希查找:以空间换时间¶
考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组,每轮执行:
- 判断数字
target - nums[i]
是否在哈希表中,若是则直接返回这两个元素的索引。 - 将键值对
nums[i]
和索引i
添加进哈希表。
实现代码如下所示,仅需单层循环即可。
two_sum.java
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.length;
// 辅助哈希表,空间复杂度 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
two_sum.cpp
/* 方法二:辅助哈希表 */
vector<int> twoSumHashTable(vector<int> &nums, int target) {
int size = nums.size();
// 辅助哈希表,空间复杂度 O(n)
unordered_map<int, int> dic;
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.find(target - nums[i]) != dic.end()) {
return {dic[target - nums[i]], i};
}
dic.emplace(nums[i], i);
}
return {};
}
two_sum.ts
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums: number[], target: number): number[] {
// 辅助哈希表,空间复杂度 O(n)
let m: Map<number, number> = new Map();
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
let index = m.get(target - nums[i]);
if (index !== undefined) {
return [index, i];
} else {
m.set(nums[i], i);
}
}
return [];
}
two_sum.c
/* 哈希表 */
struct hashTable {
int key;
int val;
UT_hash_handle hh; // 基于 uthash.h 实现
};
typedef struct hashTable hashTable;
/* 哈希表查询 */
hashTable *find(hashTable *h, int key) {
hashTable *tmp;
HASH_FIND_INT(h, &key, tmp);
return tmp;
}
/* 哈希表元素插入 */
void insert(hashTable *h, int key, int val) {
hashTable *t = find(h, key);
if (t == NULL) {
hashTable *tmp = malloc(sizeof(hashTable));
tmp->key = key, tmp->val = val;
HASH_ADD_INT(h, key, tmp);
} else {
t->val = val;
}
}
/* 方法二:辅助哈希表 */
int *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {
hashTable *hashtable = NULL;
for (int i = 0; i < numsSize; i++) {
hashTable *t = find(hashtable, target - nums[i]);
if (t != NULL) {
int *res = malloc(sizeof(int) * 2);
res[0] = t->val, res[1] = i;
*returnSize = 2;
return res;
}
insert(hashtable, nums[i], i);
}
*returnSize = 0;
return NULL;
}
two_sum.cs
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.Length;
// 辅助哈希表,空间复杂度 O(n)
Dictionary<int, int> dic = new();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.ContainsKey(target - nums[i])) {
return new int[] { dic[target - nums[i]], i };
}
dic.Add(nums[i], i);
}
return Array.Empty<int>();
}
two_sum.zig
// 方法二:辅助哈希表
fn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {
var size: usize = nums.len;
// 辅助哈希表,空间复杂度 O(n)
var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer dic.deinit();
var i: usize = 0;
// 单层循环,时间复杂度 O(n)
while (i < size) : (i += 1) {
if (dic.contains(target - nums[i])) {
return [_]i32{dic.get(target - nums[i]).?, @intCast(i)};
}
try dic.put(nums[i], @intCast(i));
}
return null;
}
two_sum.dart
/* 方法二: 辅助哈希表 */
List<int> twoSumHashTable(List<int> nums, int target) {
int size = nums.length;
Map<int, int> dic = HashMap();
for (var i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return [dic[target - nums[i]]!, i];
}
dic.putIfAbsent(nums[i], () => i);
}
return [0];
}
此方法通过哈希查找将时间复杂度从 \(O(n^2)\) 降低至 \(O(n)\) ,大幅提升运行效率。
由于需要维护一个额外的哈希表,因此空间复杂度为 \(O(n)\) 。尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法。