--- comments: true --- # 8.1. 堆 「堆 Heap」是一棵限定条件下的「完全二叉树」。根据成立条件,堆主要分为两种类型: - 「大顶堆 Max Heap」,任意结点的值 $\geq$ 其子结点的值; - 「小顶堆 Min Heap」,任意结点的值 $\leq$ 其子结点的值; ![min_heap_and_max_heap](heap.assets/min_heap_and_max_heap.png) ## 8.1.1. 堆术语与性质 - 由于堆是完全二叉树,因此最底层结点靠左填充,其它层结点皆被填满。 - 二叉树中的根结点对应「堆顶」,底层最靠右结点对应「堆底」。 - 对于大顶堆 / 小顶堆,其堆顶元素(即根结点)的值最大 / 最小。 ## 8.1.2. 堆常用操作 值得说明的是,多数编程语言提供的是「优先队列 Priority Queue」,其是一种抽象数据结构,**定义为具有出队优先级的队列**。 而恰好,**堆的定义与优先队列的操作逻辑完全吻合**,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构。因此,本文与代码对两者不做特别区分,统一使用「堆」来命名。 堆的常用操作见下表(方法命名以 Java 为例)。

Table. 堆的常用操作

| 方法 | 描述 | 时间复杂度 | | --------- | -------------------------------------------- | ----------- | | add() | 元素入堆 | $O(\log n)$ | | poll() | 堆顶元素出堆 | $O(\log n)$ | | peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | $O(1)$ | | size() | 获取堆的元素数量 | $O(1)$ | | isEmpty() | 判断堆是否为空 | $O(1)$ |
我们可以直接使用编程语言提供的堆类(或优先队列类)。 !!! tip 类似于排序中“从小到大排列”和“从大到小排列”,“大顶堆”和“小顶堆”可仅通过修改 Comparator 来互相转换。 === "Java" ```java title="heap.java" /* 初始化堆 */ // 初始化小顶堆 Queue minHeap = new PriorityQueue<>(); // 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可) Queue maxHeap = new PriorityQueue<>((a, b) -> { return b - a; }); /* 元素入堆 */ maxHeap.add(1); maxHeap.add(3); maxHeap.add(2); maxHeap.add(5); maxHeap.add(4); /* 获取堆顶元素 */ int peek = maxHeap.peek(); // 5 /* 堆顶元素出堆 */ // 出堆元素会形成一个从大到小的序列 peek = heap.poll(); // 5 peek = heap.poll(); // 4 peek = heap.poll(); // 3 peek = heap.poll(); // 2 peek = heap.poll(); // 1 /* 获取堆大小 */ int size = maxHeap.size(); /* 判断堆是否为空 */ boolean isEmpty = maxHeap.isEmpty(); /* 输入列表并建堆 */ minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4)); ``` === "C++" ```cpp title="heap.cpp" /* 初始化堆 */ // 初始化小顶堆 priority_queue, greater> minHeap; // 初始化大顶堆 priority_queue, less> maxHeap; /* 元素入堆 */ maxHeap.push(1); maxHeap.push(3); maxHeap.push(2); maxHeap.push(5); maxHeap.push(4); /* 获取堆顶元素 */ int peek = maxHeap.top(); // 5 /* 堆顶元素出堆 */ // 出堆元素会形成一个从大到小的序列 maxHeap.pop(); // 5 maxHeap.pop(); // 4 maxHeap.pop(); // 3 maxHeap.pop(); // 2 maxHeap.pop(); // 1 /* 获取堆大小 */ int size = maxHeap.size(); /* 判断堆是否为空 */ bool isEmpty = maxHeap.empty(); /* 输入列表并建堆 */ vector input{1, 3, 2, 5, 4}; priority_queue, greater> minHeap(input.begin(), input.end()); ``` === "Python" ```python title="heap.py" ``` === "Go" ```go title="heap.go" // Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆 // 实现 heap.Interface 需要同时实现 sort.Interface type intHeap []any // Push heap.Interface 的方法,实现推入元素到堆 func (h *intHeap) Push(x any) { // Push 和 Pop 使用 pointer receiver 作为参数 // 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。 *h = append(*h, x.(int)) } // Pop heap.Interface 的方法,实现弹出堆顶元素 func (h *intHeap) Pop() any { // 待出堆元素存放在最后 last := (*h)[len(*h)-1] *h = (*h)[:len(*h)-1] return last } // Len sort.Interface 的方法 func (h *intHeap) Len() int { return len(*h) } // Less sort.Interface 的方法 func (h *intHeap) Less(i, j int) bool { // 如果实现小顶堆,则需要调整为小于号 return (*h)[i].(int) > (*h)[j].(int) } // Swap sort.Interface 的方法 func (h *intHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] } // Top 获取堆顶元素 func (h *intHeap) Top() any { return (*h)[0] } /* Driver Code */ func TestHeap(t *testing.T) { /* 初始化堆 */ // 初始化大顶堆 maxHeap := &intHeap{} heap.Init(maxHeap) /* 元素入堆 */ // 调用 heap.Interface 的方法,来添加元素 heap.Push(maxHeap, 1) heap.Push(maxHeap, 3) heap.Push(maxHeap, 2) heap.Push(maxHeap, 4) heap.Push(maxHeap, 5) /* 获取堆顶元素 */ top := maxHeap.Top() fmt.Printf("堆顶元素为 %d\n", top) /* 堆顶元素出堆 */ // 调用 heap.Interface 的方法,来移除元素 heap.Pop(maxHeap) heap.Pop(maxHeap) heap.Pop(maxHeap) heap.Pop(maxHeap) heap.Pop(maxHeap) /* 获取堆大小 */ size := len(*maxHeap) fmt.Printf("堆元素数量为 %d\n", size) /* 判断堆是否为空 */ isEmpty := len(*maxHeap) == 0 fmt.Printf("堆是否为空 %t\n", isEmpty) } ``` === "JavaScript" ```javascript title="heap.js" // JavaScript 未提供内置 heap 类 ``` === "TypeScript" ```typescript title="heap.ts" // TypeScript 未提供内置堆 Heap 类 ``` === "C" ```c title="heap.c" ``` === "C#" ```csharp title="heap.cs" ``` === "Swift" ```swift title="heap.swift" // Swift 未提供内置 heap 类 ``` === "Zig" ```zig title="heap.zig" ``` ## 8.1.3. 堆的实现 下文实现的是「大顶堆」,若想转换为「小顶堆」,将所有大小逻辑判断取逆(例如将 $\geq$ 替换为 $\leq$ )即可,有兴趣的同学可自行实现。 ### 堆的存储与表示 在二叉树章节我们学过,「完全二叉树」非常适合使用「数组」来表示,而堆恰好是一棵完全二叉树,**因而我们采用「数组」来存储「堆」**。 **二叉树指针**。使用数组表示二叉树时,元素代表结点值,索引代表结点在二叉树中的位置,**而结点指针通过索引映射公式来实现**。 具体地,给定索引 $i$ ,那么其左子结点索引为 $2i + 1$ 、右子结点索引为 $2i + 2$ 、父结点索引为 $(i - 1) / 2$ (向下整除)。当索引越界时,代表空结点或结点不存在。 ![representation_of_heap](heap.assets/representation_of_heap.png) 我们将索引映射公式封装成函数,以便后续使用。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` === "Python" ```python title="my_heap.py" ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{left} [class]{maxHeap}-[func]{right} [class]{maxHeap}-[func]{parent} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{#left} [class]{MaxHeap}-[func]{#right} [class]{MaxHeap}-[func]{#parent} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{left} [class]{maxHeap}-[func]{right} [class]{maxHeap}-[func]{parent} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{left} [class]{MaxHeap}-[func]{right} [class]{MaxHeap}-[func]{parent} ``` ### 访问堆顶元素 堆顶元素是二叉树的根结点,即列表首元素。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{peek} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{peek} ``` === "Python" ```python title="my_heap.py" ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{peek} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{peek} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{peek} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{peek} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{peek} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{peek} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{peek} ``` ### 元素入堆 给定元素 `val` ,我们先将其添加到堆底。添加后,由于 `val` 可能大于堆中其它元素,此时堆的成立条件可能已经被破坏,**因此需要修复从插入结点到根结点这条路径上的各个结点**,该操作被称为「堆化 Heapify」。 考虑从入堆结点开始,**从底至顶执行堆化**。具体地,比较插入结点与其父结点的值,若插入结点更大则将它们交换;并循环以上操作,从底至顶地修复堆中的各个结点;直至越过根结点时结束,或当遇到无需交换的结点时提前结束。 === "Step 1" ![heap_push_step1](heap.assets/heap_push_step1.png) === "Step 2" ![heap_push_step2](heap.assets/heap_push_step2.png) === "Step 3" ![heap_push_step3](heap.assets/heap_push_step3.png) === "Step 4" ![heap_push_step4](heap.assets/heap_push_step4.png) === "Step 5" ![heap_push_step5](heap.assets/heap_push_step5.png) === "Step 6" ![heap_push_step6](heap.assets/heap_push_step6.png) 设结点总数为 $n$ ,则树的高度为 $O(\log n)$ ,易得堆化操作的循环轮数最多为 $O(\log n)$ ,**因而元素入堆操作的时间复杂度为 $O(\log n)$** 。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` === "Python" ```python title="my_heap.py" ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{push} [class]{maxHeap}-[func]{siftUp} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{#siftUp} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{push} [class]{maxHeap}-[func]{siftUp} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{push} [class]{MaxHeap}-[func]{siftUp} ``` ### 堆顶元素出堆 堆顶元素是二叉树根结点,即列表首元素,如果我们直接将首元素从列表中删除,则二叉树中所有结点都会随之发生移位(索引发生变化),这样后续使用堆化修复就很麻烦了。为了尽量减少元素索引变动,采取以下操作步骤: 1. 交换堆顶元素与堆底元素(即交换根结点与最右叶结点); 2. 交换完成后,将堆底从列表中删除(注意,因为已经交换,实际上删除的是原来的堆顶元素); 3. 从根结点开始,**从顶至底执行堆化**; 顾名思义,**从顶至底堆化的操作方向与从底至顶堆化相反**,我们比较根结点的值与其两个子结点的值,将最大的子结点与根结点执行交换,并循环以上操作,直到越过叶结点时结束,或当遇到无需交换的结点时提前结束。 === "Step 1" ![heap_poll_step1](heap.assets/heap_poll_step1.png) === "Step 2" ![heap_poll_step2](heap.assets/heap_poll_step2.png) === "Step 3" ![heap_poll_step3](heap.assets/heap_poll_step3.png) === "Step 4" ![heap_poll_step4](heap.assets/heap_poll_step4.png) === "Step 5" ![heap_poll_step5](heap.assets/heap_poll_step5.png) === "Step 6" ![heap_poll_step6](heap.assets/heap_poll_step6.png) === "Step 7" ![heap_poll_step7](heap.assets/heap_poll_step7.png) === "Step 8" ![heap_poll_step8](heap.assets/heap_poll_step8.png) === "Step 9" ![heap_poll_step9](heap.assets/heap_poll_step9.png) === "Step 10" ![heap_poll_step10](heap.assets/heap_poll_step10.png) 与元素入堆操作类似,**堆顶元素出堆操作的时间复杂度为 $O(\log n)$** 。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` === "Python" ```python title="my_heap.py" ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{poll} [class]{maxHeap}-[func]{siftDown} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{#siftDown} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{poll} [class]{maxHeap}-[func]{siftDown} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{poll} [class]{MaxHeap}-[func]{siftDown} ``` ### 输入数据并建堆 * 如果我们想要直接输入一个列表并将其建堆,那么该怎么做呢?最直接地,考虑使用「元素入堆」方法,将列表元素依次入堆。元素入堆的时间复杂度为 $O(\log n)$ ,而平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。 然而,存在一种更加优雅的建堆方法。设结点数量为 $n$ ,我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化**,因为其没有子结点。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{MaxHeap} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{MaxHeap} ``` === "Python" ```python title="my_heap.py" ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{newMaxHeap} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{constructor} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{constructor} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{newMaxHeap} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{MaxHeap} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{init} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{init} ``` 那么,第二种建堆方法的时间复杂度时多少呢?我们来做一下简单推算。 - 完全二叉树中,设结点总数为 $n$ ,则叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此在排除叶结点后,需要堆化结点数量为 $(n - 1)/2$ ,即为 $O(n)$ ; - 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 $O(\log n)$ ; 将上述两者相乘,可得时间复杂度为 $O(n \log n)$ 。然而,该估算结果仍不够准确,因为我们没有考虑到 **二叉树底层结点远多于顶层结点** 的性质。 下面我们来尝试展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。上文提到,**结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”**。因此,我们将各层的“结点数量 $\times$ 结点高度”求和,即可得到所有结点的堆化的迭代次数总和。 $$ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1 $$ ![heapify_count](heap.assets/heapify_count.png) 化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,易得 $$ \begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline \end{aligned} $$ **使用错位相减法**,令下式 $2 T(h)$ 减去上式 $T(h)$ ,可得 $$ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h $$ 观察上式,$T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为 $$ \begin{aligned} T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline & = 2^{h+1} - h \newline & = O(2^h) \end{aligned} $$ 进一步地,高度为 $h$ 的完美二叉树的结点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。 ## 8.1.4. 堆常见应用 - **优先队列**。堆常作为实现优先队列的首选数据结构,入队和出队操作时间复杂度为 $O(\log n)$ ,建队操作为 $O(n)$ ,皆非常高效。 - **堆排序**。给定一组数据,我们使用其建堆,并依次全部弹出,则可以得到有序的序列。当然,堆排序一般无需弹出元素,仅需每轮将堆顶元素交换至数组尾部并减小堆的长度即可。 - **获取最大的 $k$ 个元素**。这既是一道经典算法题目,也是一种常见应用,例如选取热度前 10 的新闻作为微博热搜,选取前 10 销量的商品等。