/** * File: subset_sum_i.java * Created Time: 2023-06-21 * Author: krahets (krahets@163.com) */ package chapter_backtracking; import java.util.*; public class subset_sum_i { /* 回溯算法:子集和 I */ static void backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 I */ static List> subsetSumI(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) Arrays.sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } public static void main(String[] args) { int[] nums = { 3, 4, 5 }; int target = 9; List> res = subsetSumI(nums, target); System.out.println("输入数组 nums = " + Arrays.toString(nums) + ", target = " + target); System.out.println("所有和等于 " + target + " 的子集 res = " + res); } }