---
comments: true
---
# 6.2. 哈希冲突
在理想情况下,哈希函数为每个输入生成唯一的输出,实现 key 和数组索引的一一对应。但实际上,**哈希函数的输入空间通常远大于输出空间**,因此多个输入产生相同输出的情况是不可避免的。例如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一数组索引。
这种多个输入对应同一输出索引的现象被称为「哈希冲突 Hash Collision」。哈希冲突会导致查询结果错误,严重影响哈希表的可用性。哈希冲突的解决方法主要有两种:
- **扩大哈希表容量**:哈希表容量越大,键值对聚集的概率就越低。极端情况下,当输入空间和输出空间大小相等时,哈希表等同于数组,每个 key 都对应唯一的数组索引。
- **优化哈希表结构**:常用方法包括链式地址和开放寻址。
## 6.2.1. 哈希表扩容
哈希函数的最后一步通常是对桶数量 $n$ 取余,作用是将哈希值映射到桶索引范围,从而将 key 放入对应的桶中。当哈希表容量越大(即 $n$ 越大)时,多个 key 被分配到同一个桶中的概率就越低,冲突就越少。
因此,**当哈希表内的冲突总体较为严重时,编程语言通常通过扩容哈希表来缓解冲突**。类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,开销较大。
编程语言通常使用「负载因子 Load Factor」来衡量哈希冲突的严重程度,**定义为哈希表中元素数量除以桶数量**,常作为哈希表扩容的触发条件。在 Java 中,当负载因子超过 $0.75$ 时,系统会将 HashMap 容量扩展为原先的 $2$ 倍。
## 6.2.2. 链式地址
在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 Separate Chaining」将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。
![链式地址哈希表](hash_collision.assets/hash_collision_chaining.png)
Fig. 链式地址哈希表
链式地址下,哈希表的操作方法包括:
- **查询元素**:输入 key ,经过哈希函数得到数组索引,即可访问链表头节点,然后遍历链表并对比 key 以查找目标键值对。
- **添加元素**:先通过哈希函数访问链表头节点,然后将节点(即键值对)添加到链表中。
- **删除元素**:根据哈希函数的结果访问链表头部,接着遍历链表以查找目标节点,并将其删除。
尽管链式地址法解决了哈希冲突问题,但仍存在一些局限性,包括:
- **占用空间增大**,由于链表或二叉树包含节点指针,相比数组更加耗费内存空间;
- **查询效率降低**,因为需要线性遍历链表来查找对应元素;
以下给出了链式地址哈希表的简单实现,需要注意:
- 为了使得代码尽量简短,我们使用列表(动态数组)代替链表。换句话说,哈希表(数组)包含多个桶,每个桶都是一个列表。
- 以下代码实现了哈希表扩容方法。具体来看,当负载因子超过 $0.75$ 时,我们将哈希表扩容至 $2$ 倍。
=== "Java"
```java title="hash_map_chaining.java"
/* 键值对 */
class Pair {
public int key;
public String val;
public Pair(int key, String val) {
this.key = key;
this.val = val;
}
}
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2 / 3.0;
extendRatio = 2;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
String get(int key) {
int index = hashFunc(key);
List bucket = buckets.get(index);
// 遍历桶,若找到 key 则返回对应 val
for (Pair pair : bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List bucket = buckets.get(index);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair : bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = new Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List bucket = buckets.get(index);
// 遍历桶,从中删除键值对
for (Pair pair : bucket) {
if (pair.key == key)
bucket.remove(pair);
}
size--;
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List bucket : bucketsTmp) {
for (Pair pair : bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void print() {
for (List bucket : buckets) {
List res = new ArrayList<>();
for (Pair pair : bucket) {
res.add(pair.key + " -> " + pair.val);
}
System.out.println(res);
}
}
}
```
=== "C++"
```cpp title="hash_map_chaining.cpp"
/* 键值对 */
struct Pair {
public:
int key;
string val;
Pair(int key, string val) {
this->key = key;
this->val = val;
}
};
/* 链式地址哈希表 */
class HashMapChaining {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector> buckets; // 桶数组
public:
/* 构造方法 */
HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3), extendRatio(2) {
buckets.resize(capacity);
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / (double)capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 遍历桶,若找到 key 则返回对应 val
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
return pair->val;
}
}
// 若未找到 key 则返回 nullptr
return nullptr;
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
pair->val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].push_back(new Pair(key, val));
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
auto &bucket = buckets[index];
// 遍历桶,从中删除键值对
for (int i = 0; i < bucket.size(); i++) {
if (bucket[i]->key == key) {
Pair *tmp = bucket[i];
bucket.erase(bucket.begin() + i); // 从中删除键值对
delete tmp; // 释放内存
size--;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets.clear();
buckets.resize(capacity);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (auto &bucket : bucketsTmp) {
for (Pair *pair : bucket) {
put(pair->key, pair->val);
}
}
}
/* 打印哈希表 */
void print() {
for (auto &bucket : buckets) {
cout << "[";
for (Pair *pair : bucket) {
cout << pair->key << " -> " << pair->val << ", ";
}
cout << "]\n";
}
}
};
```
=== "Python"
```python title="hash_map_chaining.py"
class Pair:
"""键值对"""
def __init__(self, key: int, val: str):
self.key = key
self.val = val
class HashMapChaining:
"""链式地址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2 / 3 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets = [[] for _ in range(self.capacity)] # 桶数组
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def get(self, key: int) -> str:
"""查询操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若找到 key 则返回对应 val
for pair in bucket:
if pair.key == key:
return pair.val
# 若未找到 key 则返回 None
return None
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket:
if pair.key == key:
pair.val = val
return
# 若无该 key ,则将键值对添加至尾部
pair = Pair(key, val)
bucket.append(pair)
self.size += 1
def remove(self, key: int):
"""删除操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,从中删除键值对
for pair in bucket:
if pair.key == key:
bucket.remove(pair)
self.size -= 1
return
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [[] for _ in range(self.capacity)]
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for bucket in buckets:
for pair in bucket:
self.put(pair.key, pair.val)
def print(self):
"""打印哈希表"""
for bucket in self.buckets:
res = []
for pair in bucket:
res.append(str(pair.key) + " -> " + pair.val)
print(res)
```
=== "Go"
```go title="hash_map_chaining.go"
[class]{pair}-[func]{}
[class]{hashMapChaining}-[func]{}
```
=== "JavaScript"
```javascript title="hash_map_chaining.js"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "TypeScript"
```typescript title="hash_map_chaining.ts"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "C"
```c title="hash_map_chaining.c"
[class]{pair}-[func]{}
[class]{hashMapChaining}-[func]{}
```
=== "C#"
```csharp title="hash_map_chaining.cs"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Swift"
```swift title="hash_map_chaining.swift"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Zig"
```zig title="hash_map_chaining.zig"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Dart"
```dart title="hash_map_chaining.dart"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
!!! tip
为了提高效率,**我们可以将链表转换为「AVL 树」或「红黑树」**,从而将查询操作的时间复杂度优化至 $O(\log n)$ 。
## 6.2.3. 开放寻址
「开放寻址 Open Addressing」不引入额外的数据结构,而是通过“多次探测”来解决哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希。
### 线性探测
线性探测采用固定步长的线性查找来解决哈希冲突。
- **插入元素**:通过哈希函数计算数组索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 $1$ ),直至找到空位,将元素插入其中。
- **查找元素**:若发现哈希冲突,则使用相同步长向后线性遍历,直到找到对应元素,返回 value 即可;或者若遇到空位,说明目标键值对不在哈希表中,返回 $\text{None}$ 。
![线性探测](hash_collision.assets/hash_collision_linear_probing.png)
Fig. 线性探测
然而,线性探测存在以下缺陷:
- **不能直接删除元素**。删除元素会在数组内产生一个空位,查找其他元素时,该空位可能导致程序误判元素不存在。因此,需要借助一个标志位来标记已删除元素。
- **容易产生聚集**。数组内连续被占用位置越长,这些连续位置发生哈希冲突的可能性越大,进一步促使这一位置的“聚堆生长”,最终导致增删查改操作效率降低。
如以下代码所示,为开放寻址(线性探测)哈希表的简单实现,重点包括:
- 我们使用一个固定的键值对实例 `removed` 来标记已删除元素。也就是说,当一个桶为 $\text{None}$ 或 `removed` 时,这个桶都是空的,可用于放置键值对。
- 被标记为已删除的空间是可以再次被使用的。当插入元素时,若通过哈希函数找到了被标记为已删除的索引,则可将该元素放置到该索引。
- 在线性探测时,我们从当前索引 `index` 向后遍历;而当越过数组尾部时,需要回到头部继续遍历。
=== "Java"
```java title="hash_map_open_addressing.java"
/* 键值对 */
class Pair {
public int key;
public String val;
public Pair(int key, String val) {
this.key = key;
this.val = val;
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private int size; // 键值对数量
private int capacity; // 哈希表容量
private double loadThres; // 触发扩容的负载因子阈值
private int extendRatio; // 扩容倍数
private Pair[] buckets; // 桶数组
private Pair removed; // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new Pair[capacity];
removed = new Pair(-1, "-1");
}
/* 哈希函数 */
public int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
public double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
public String get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (buckets[j] == null)
return null;
// 若遇到指定 key ,则返回对应 val
if (buckets[j].key == key && buckets[j] != removed)
return buckets[j].val;
}
return null;
}
/* 添加操作 */
public void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (buckets[j] == null || buckets[j] == removed) {
buckets[j] = new Pair(key, val);
size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (buckets[j].key == key) {
buckets[j].val = val;
return;
}
}
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (buckets[j] == null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (buckets[j].key == key) {
buckets[j] = removed;
size -= 1;
return;
}
}
}
/* 扩容哈希表 */
public void extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair pair : bucketsTmp) {
if (pair != null && pair != removed) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
for (Pair pair : buckets) {
if (pair != null) {
System.out.println(pair.key + " -> " + pair.val);
} else {
System.out.println("null");
}
}
}
}
```
=== "C++"
```cpp title="hash_map_open_addressing.cpp"
/* 键值对 */
struct Pair {
int key;
string val;
Pair(int k, string v) : key(k), val(v) {
}
};
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector buckets; // 桶数组
Pair *removed; // 删除标记
public:
/* 构造方法 */
HashMapOpenAddressing() {
// 构造方法
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = vector(capacity, nullptr);
removed = new Pair(-1, "-1");
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return static_cast(size) / capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则返回 nullptr
if (buckets[j] == nullptr)
return nullptr;
// 若遇到指定 key ,则返回对应 val
if (buckets[j]->key == key && buckets[j] != removed)
return buckets[j]->val;
}
return nullptr;
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres)
extend();
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (buckets[j] == nullptr || buckets[j] == removed) {
buckets[j] = new Pair(key, val);
size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (buckets[j]->key == key) {
buckets[j]->val = val;
return;
}
}
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (buckets[j] == nullptr)
return;
// 若遇到指定 key ,则标记删除并返回
if (buckets[j]->key == key) {
delete buckets[j]; // 释放内存
buckets[j] = removed;
size -= 1;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = vector(capacity, nullptr);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair *pair : bucketsTmp) {
if (pair != nullptr && pair != removed) {
put(pair->key, pair->val);
}
}
}
/* 打印哈希表 */
void print() {
for (auto &pair : buckets) {
if (pair != nullptr) {
cout << pair->key << " -> " << pair->val << endl;
} else {
cout << "nullptr" << endl;
}
}
}
};
```
=== "Python"
```python title="hash_map_open_addressing.py"
class Pair:
"""键值对"""
def __init__(self, key: int, val: str):
self.key = key
self.val = val
class HashMapOpenAddressing:
"""开放寻址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2 / 3 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets: list[Pair | None] = [None] * self.capacity # 桶数组
self.removed = Pair(-1, "-1") # 删除标记
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def get(self, key: int) -> str:
"""查询操作"""
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶,说明无此 key ,则返回 None
if self.buckets[j] is None:
return None
# 若遇到指定 key ,则返回对应 val
if self.buckets[j].key == key and self.buckets[j] != self.removed:
return self.buckets[j].val
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if self.buckets[j] in [None, self.removed]:
self.buckets[j] = Pair(key, val)
self.size += 1
return
# 若遇到指定 key ,则更新对应 val
if self.buckets[j].key == key:
self.buckets[j].val = val
return
def remove(self, key: int):
"""删除操作"""
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶,说明无此 key ,则直接返回
if self.buckets[j] is None:
return
# 若遇到指定 key ,则标记删除并返回
if self.buckets[j].key == key:
self.buckets[j] = self.removed
self.size -= 1
return
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets_tmp = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [None] * self.capacity
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for pair in buckets_tmp:
if pair not in [None, self.removed]:
self.put(pair.key, pair.val)
def print(self) -> None:
"""打印哈希表"""
for pair in self.buckets:
if pair is not None:
print(pair.key, "->", pair.val)
else:
print("None")
```
=== "Go"
```go title="hash_map_open_addressing.go"
[class]{pair}-[func]{}
[class]{hashMapOpenAddressing}-[func]{}
```
=== "JavaScript"
```javascript title="hash_map_open_addressing.js"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "TypeScript"
```typescript title="hash_map_open_addressing.ts"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "C"
```c title="hash_map_open_addressing.c"
[class]{pair}-[func]{}
[class]{hashMapOpenAddressing}-[func]{}
```
=== "C#"
```csharp title="hash_map_open_addressing.cs"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Swift"
```swift title="hash_map_open_addressing.swift"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Zig"
```zig title="hash_map_open_addressing.zig"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Dart"
```dart title="hash_map_open_addressing.dart"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
### 多次哈希
顾名思义,多次哈希方法是使用多个哈希函数 $f_1(x)$ , $f_2(x)$ , $f_3(x)$ , $\cdots$ 进行探测。
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空位后插入元素。
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;或遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 $\text{None}$ 。
与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会增加额外的计算量。
!!! note "编程语言的选择"
Java 采用链式地址。自 JDK 1.8 以来,当 HashMap 内数组长度达到 64 且链表长度达到 8 时,链表会被转换为红黑树以提升查找性能。
Python 采用开放寻址。字典 dict 使用伪随机数进行探测。
Golang 采用链式地址。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶;当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。