11.3 冒泡排序¶
「冒泡排序 bubble sort」通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部一样,因此得名冒泡排序。
如图 11-4 所示,冒泡过程可以利用元素交换操作来模拟:从数组最左端开始向右遍历,依次比较相邻元素大小,如果“左元素 > 右元素”就交换二者。遍历完成后,最大的元素会被移动到数组的最右端。
图 11-4 利用元素交换操作模拟冒泡
11.3.1 算法流程¶
设数组的长度为 \(n\) ,冒泡排序的步骤如图 11-5 所示。
- 首先,对 \(n\) 个元素执行“冒泡”,将数组的最大元素交换至正确位置。
- 接下来,对剩余 \(n - 1\) 个元素执行“冒泡”,将第二大元素交换至正确位置。
- 以此类推,经过 \(n - 1\) 轮“冒泡”后,前 \(n - 1\) 大的元素都被交换至正确位置。
- 仅剩的一个元素必定是最小元素,无须排序,因此数组排序完成。
图 11-5 冒泡排序流程
示例代码如下:
bubble_sort.cpp
/* 冒泡排序 */
void bubbleSort(vector<int> &nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.size() - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
}
}
}
}
bubble_sort.java
/* 冒泡排序 */
void bubbleSort(int[] nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
bubble_sort.cs
/* 冒泡排序 */
void BubbleSort(int[] nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
}
}
}
}
bubble_sort.swift
/* 冒泡排序 */
func bubbleSort(nums: inout [Int]) {
// 外循环:未排序区间为 [0, i]
for i in stride(from: nums.count - 1, to: 0, by: -1) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in stride(from: 0, to: i, by: 1) {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
}
}
}
}
bubble_sort.js
/* 冒泡排序 */
function bubbleSort(nums) {
// 外循环:未排序区间为 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
bubble_sort.ts
/* 冒泡排序 */
function bubbleSort(nums: number[]): void {
// 外循环:未排序区间为 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
bubble_sort.dart
/* 冒泡排序 */
void bubbleSort(List<int> nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
bubble_sort.zig
// 冒泡排序
fn bubbleSort(nums: []i32) void {
// 外循环:未排序区间为 [0, i]
var i: usize = nums.len - 1;
while (i > 0) : (i -= 1) {
var j: usize = 0;
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
while (j < i) : (j += 1) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
var tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
11.3.2 效率优化¶
我们发现,如果某轮“冒泡”中没有执行任何交换操作,说明数组已经完成排序,可直接返回结果。因此,可以增加一个标志位 flag
来监测这种情况,一旦出现就立即返回。
经过优化,冒泡排序的最差时间复杂度和平均时间复杂度仍为 \(O(n^2)\) ;但当输入数组完全有序时,可达到最佳时间复杂度 \(O(n)\) 。
bubble_sort.py
def bubble_sort_with_flag(nums: list[int]):
"""冒泡排序(标志优化)"""
n = len(nums)
# 外循环:未排序区间为 [0, i]
for i in range(n - 1, 0, -1):
flag = False # 初始化标志位
# 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in range(i):
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
flag = True # 记录交换元素
if not flag:
break # 此轮“冒泡”未交换任何元素,直接跳出
bubble_sort.cpp
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(vector<int> &nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.size() - 1; i > 0; i--) {
bool flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
flag = true; // 记录交换元素
}
}
if (!flag)
break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.java
/* 冒泡排序(标志优化) */
void bubbleSortWithFlag(int[] nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.length - 1; i > 0; i--) {
boolean flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if (!flag)
break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.cs
/* 冒泡排序(标志优化)*/
void BubbleSortWithFlag(int[] nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
bool flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
flag = true; // 记录交换元素
}
}
if (!flag) break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.go
/* 冒泡排序(标志优化)*/
func bubbleSortWithFlag(nums []int) {
// 外循环:未排序区间为 [0, i]
for i := len(nums) - 1; i > 0; i-- {
flag := false // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j := 0; j < i; j++ {
if nums[j] > nums[j+1] {
// 交换 nums[j] 与 nums[j + 1]
nums[j], nums[j+1] = nums[j+1], nums[j]
flag = true // 记录交换元素
}
}
if flag == false { // 此轮“冒泡”未交换任何元素,直接跳出
break
}
}
}
bubble_sort.swift
/* 冒泡排序(标志优化)*/
func bubbleSortWithFlag(nums: inout [Int]) {
// 外循环:未排序区间为 [0, i]
for i in stride(from: nums.count - 1, to: 0, by: -1) {
var flag = false // 初始化标志位
for j in stride(from: 0, to: i, by: 1) {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
flag = true // 记录交换元素
}
}
if !flag { // 此轮“冒泡”未交换任何元素,直接跳出
break
}
}
}
bubble_sort.js
/* 冒泡排序(标志优化)*/
function bubbleSortWithFlag(nums) {
// 外循环:未排序区间为 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
let flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if (!flag) break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.ts
/* 冒泡排序(标志优化)*/
function bubbleSortWithFlag(nums: number[]): void {
// 外循环:未排序区间为 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
let flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if (!flag) break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.dart
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(List<int> nums) {
// 外循环:未排序区间为 [0, i]
for (int i = nums.length - 1; i > 0; i--) {
bool flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if (!flag) break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.rs
/* 冒泡排序(标志优化) */
fn bubble_sort_with_flag(nums: &mut [i32]) {
// 外循环:未排序区间为 [0, i]
for i in (1..nums.len()).rev() {
let mut flag = false; // 初始化标志位
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in 0..i {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if !flag {break}; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
bubble_sort.c
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(int nums[], int size) {
// 外循环:未排序区间为 [0, i]
for (int i = size - 1; i > 0; i--) {
bool flag = false;
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
flag = true;
}
}
if (!flag)
break;
}
}
bubble_sort.zig
// 冒泡排序(标志优化)
fn bubbleSortWithFlag(nums: []i32) void {
// 外循环:未排序区间为 [0, i]
var i: usize = nums.len - 1;
while (i > 0) : (i -= 1) {
var flag = false; // 初始化标志位
var j: usize = 0;
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
while (j < i) : (j += 1) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
var tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true;
}
}
if (!flag) break; // 此轮“冒泡”未交换任何元素,直接跳出
}
}
11.3.3 算法特性¶
- 时间复杂度为 \(O(n^2)\)、自适应排序:各轮“冒泡”遍历的数组长度依次为 \(n - 1\)、\(n - 2\)、\(\dots\)、\(2\)、\(1\) ,总和为 \((n - 1) n / 2\) 。在引入
flag
优化后,最佳时间复杂度可达到 \(O(n)\) 。 - 空间复杂度为 \(O(1)\)、原地排序:指针 \(i\) 和 \(j\) 使用常数大小的额外空间。
- 稳定排序:由于在“冒泡”中遇到相等元素不交换。