--- comments: true --- # 10.3   Binary search boundaries ## 10.3.1   Find the left boundary !!! question Given a sorted array `nums` of length $n$, which may contain duplicate elements, return the index of the leftmost element `target`. If the element is not present in the array, return $-1$. Recall the method of binary search for an insertion point, after the search is completed, $i$ points to the leftmost `target`, **thus searching for the insertion point is essentially searching for the index of the leftmost `target`**. Consider implementing the search for the left boundary using the function for finding an insertion point. Note that the array might not contain `target`, which could lead to the following two results: - The index $i$ of the insertion point is out of bounds. - The element `nums[i]` is not equal to `target`. In these cases, simply return $-1$. The code is as follows: === "Python" ```python title="binary_search_edge.py" def binary_search_left_edge(nums: list[int], target: int) -> int: """Binary search for the leftmost target""" # Equivalent to finding the insertion point of target i = binary_search_insertion(nums, target) # Did not find target, thus return -1 if i == len(nums) or nums[i] != target: return -1 # Found target, return index i return i ``` === "C++" ```cpp title="binary_search_edge.cpp" /* Binary search for the leftmost target */ int binarySearchLeftEdge(vector &nums, int target) { // Equivalent to finding the insertion point of target int i = binarySearchInsertion(nums, target); // Did not find target, thus return -1 if (i == nums.size() || nums[i] != target) { return -1; } // Found target, return index i return i; } ``` === "Java" ```java title="binary_search_edge.java" /* Binary search for the leftmost target */ int binarySearchLeftEdge(int[] nums, int target) { // Equivalent to finding the insertion point of target int i = binary_search_insertion.binarySearchInsertion(nums, target); // Did not find target, thus return -1 if (i == nums.length || nums[i] != target) { return -1; } // Found target, return index i return i; } ``` === "C#" ```csharp title="binary_search_edge.cs" [class]{binary_search_edge}-[func]{BinarySearchLeftEdge} ``` === "Go" ```go title="binary_search_edge.go" [class]{}-[func]{binarySearchLeftEdge} ``` === "Swift" ```swift title="binary_search_edge.swift" [class]{}-[func]{binarySearchLeftEdge} ``` === "JS" ```javascript title="binary_search_edge.js" [class]{}-[func]{binarySearchLeftEdge} ``` === "TS" ```typescript title="binary_search_edge.ts" [class]{}-[func]{binarySearchLeftEdge} ``` === "Dart" ```dart title="binary_search_edge.dart" [class]{}-[func]{binarySearchLeftEdge} ``` === "Rust" ```rust title="binary_search_edge.rs" [class]{}-[func]{binary_search_left_edge} ``` === "C" ```c title="binary_search_edge.c" [class]{}-[func]{binarySearchLeftEdge} ``` === "Kotlin" ```kotlin title="binary_search_edge.kt" [class]{}-[func]{binarySearchLeftEdge} ``` === "Ruby" ```ruby title="binary_search_edge.rb" [class]{}-[func]{binary_search_left_edge} ``` === "Zig" ```zig title="binary_search_edge.zig" [class]{}-[func]{binarySearchLeftEdge} ``` ## 10.3.2   Find the right boundary So how do we find the rightmost `target`? The most straightforward way is to modify the code, replacing the pointer contraction operation in the case of `nums[m] == target`. The code is omitted here, but interested readers can implement it on their own. Below we introduce two more cunning methods. ### 1.   Reusing the search for the left boundary In fact, we can use the function for finding the leftmost element to find the rightmost element, specifically by **transforming the search for the rightmost `target` into a search for the leftmost `target + 1`**. As shown in Figure 10-7, after the search is completed, the pointer $i$ points to the leftmost `target + 1` (if it exists), while $j$ points to the rightmost `target`, **thus returning $j$ is sufficient**. ![Transforming the search for the right boundary into the search for the left boundary](binary_search_edge.assets/binary_search_right_edge_by_left_edge.png){ class="animation-figure" }

Figure 10-7   Transforming the search for the right boundary into the search for the left boundary

Please note, the insertion point returned is $i$, therefore, it should be subtracted by $1$ to obtain $j$: === "Python" ```python title="binary_search_edge.py" def binary_search_right_edge(nums: list[int], target: int) -> int: """Binary search for the rightmost target""" # Convert to finding the leftmost target + 1 i = binary_search_insertion(nums, target + 1) # j points to the rightmost target, i points to the first element greater than target j = i - 1 # Did not find target, thus return -1 if j == -1 or nums[j] != target: return -1 # Found target, return index j return j ``` === "C++" ```cpp title="binary_search_edge.cpp" /* Binary search for the rightmost target */ int binarySearchRightEdge(vector &nums, int target) { // Convert to finding the leftmost target + 1 int i = binarySearchInsertion(nums, target + 1); // j points to the rightmost target, i points to the first element greater than target int j = i - 1; // Did not find target, thus return -1 if (j == -1 || nums[j] != target) { return -1; } // Found target, return index j return j; } ``` === "Java" ```java title="binary_search_edge.java" /* Binary search for the rightmost target */ int binarySearchRightEdge(int[] nums, int target) { // Convert to finding the leftmost target + 1 int i = binary_search_insertion.binarySearchInsertion(nums, target + 1); // j points to the rightmost target, i points to the first element greater than target int j = i - 1; // Did not find target, thus return -1 if (j == -1 || nums[j] != target) { return -1; } // Found target, return index j return j; } ``` === "C#" ```csharp title="binary_search_edge.cs" [class]{binary_search_edge}-[func]{BinarySearchRightEdge} ``` === "Go" ```go title="binary_search_edge.go" [class]{}-[func]{binarySearchRightEdge} ``` === "Swift" ```swift title="binary_search_edge.swift" [class]{}-[func]{binarySearchRightEdge} ``` === "JS" ```javascript title="binary_search_edge.js" [class]{}-[func]{binarySearchRightEdge} ``` === "TS" ```typescript title="binary_search_edge.ts" [class]{}-[func]{binarySearchRightEdge} ``` === "Dart" ```dart title="binary_search_edge.dart" [class]{}-[func]{binarySearchRightEdge} ``` === "Rust" ```rust title="binary_search_edge.rs" [class]{}-[func]{binary_search_right_edge} ``` === "C" ```c title="binary_search_edge.c" [class]{}-[func]{binarySearchRightEdge} ``` === "Kotlin" ```kotlin title="binary_search_edge.kt" [class]{}-[func]{binarySearchRightEdge} ``` === "Ruby" ```ruby title="binary_search_edge.rb" [class]{}-[func]{binary_search_right_edge} ``` === "Zig" ```zig title="binary_search_edge.zig" [class]{}-[func]{binarySearchRightEdge} ``` ### 2.   Transforming into an element search We know that when the array does not contain `target`, $i$ and $j$ will eventually point to the first element greater and smaller than `target` respectively. Thus, as shown in Figure 10-8, we can construct an element that does not exist in the array, to search for the left and right boundaries. - To find the leftmost `target`: it can be transformed into searching for `target - 0.5`, and return the pointer $i$. - To find the rightmost `target`: it can be transformed into searching for `target + 0.5`, and return the pointer $j$. ![Transforming the search for boundaries into the search for an element](binary_search_edge.assets/binary_search_edge_by_element.png){ class="animation-figure" }

Figure 10-8   Transforming the search for boundaries into the search for an element

The code is omitted here, but two points are worth noting. - The given array does not contain decimals, meaning we do not need to worry about how to handle equal situations. - Since this method introduces decimals, the variable `target` in the function needs to be changed to a floating point type (no change needed in Python).