跳转至

15.3.   最大容量问题

Question

输入一个数组 \(ht\) ,数组中的每个元素代表一个垂直隔板的高度。数组中的任意两个隔板,以及它们之间的空间可以组成一个容器。容器的容量等于高度和宽度的乘积(即面积),其中高度由较短的隔板决定,宽度是两个隔板的数组索引之差。

请在数组中选择两个隔板,使得组成的容器的容量最大,返回最大容量。

最大容量问题的示例数据

Fig. 最大容量问题的示例数据

第一步:问题分析

容器由任意两个隔板围成,因此本题的状态为两个隔板的索引,记为 \([i, j]\)

根据定义,容量等于高度乘以宽度,其中高度由短板决定,宽度是两隔板的索引之差。设容量为 \(cap[i, j]\) ,可得计算公式:

\[ cap[i, j] = \min(ht[i], ht[j]) \times (j - i) \]

设数组长度为 \(n\) ,两个隔板的组合数量(即状态总数)为 \(C_n^2 = \frac{n(n - 1)}{2}\) 个。最直接地,我们可以穷举所有状态,从而求得最大容量,时间复杂度为 \(O(n^2)\)

第二步:贪心策略确定

当然,这道题还有更高效率的解法。如下图所示,现选取一个状态 \([i, j]\) ,其满足索引 \(i < j\) 且高度 \(ht[i] < ht[j]\) ,即 \(i\) 为短板、 \(j\) 为长板。

初始状态

Fig. 初始状态

我们发现,如果将长板 \(j\) 向短板 \(i\) 靠近,则容量一定变小。这是因为在移动长板 \(j\) 后:

  • 宽度 \(j-i\) 肯定变小;
  • 高度由短板决定,因此高度只可能不变( \(i\) 仍为短板)或变小(移动后的 \(j\) 成为短板);

向内移动长板后的状态

Fig. 向内移动长板后的状态

反向思考,我们只有向内收缩短板 \(i\) ,才有可能使容量变大。因为虽然宽度一定变小,但高度可能会变大(移动后的短板 \(i\) 变长了)。

向内移动长板后的状态

Fig. 向内移动长板后的状态

由此便可推出本题的贪心策略:

  1. 初始状态下,指针 \(i\) , \(j\) 分列与数组两端。
  2. 计算当前状态的容量 \(cap[i, j]\) ,并更新最大容量。
  3. 比较板 \(i\) 和 板 \(j\) 的高度,并将短板向内移动一格。
  4. 循环执行第 2. , 3. 步,直至 \(i\)\(j\) 相遇时结束。

最大容量问题的贪心过程

max_capacity_greedy_step2

max_capacity_greedy_step3

max_capacity_greedy_step4

max_capacity_greedy_step5

max_capacity_greedy_step6

max_capacity_greedy_step7

max_capacity_greedy_step8

max_capacity_greedy_step9

代码实现如下所示。最多循环 \(n\) 轮,因此时间复杂度为 \(O(n)\) 。变量 \(i\) , \(j\) , \(res\) 使用常数大小额外空间,因此空间复杂度为 \(O(1)\)

max_capacity.java
/* 最大容量:贪心 */
int maxCapacity(int[] ht) {
    // 初始化 i, j 分列数组两端
    int i = 0, j = ht.length - 1;
    // 初始最大容量为 0
    int res = 0;
    // 循环贪心选择,直至两板相遇
    while (i < j) {
        // 更新最大容量
        int cap = Math.min(ht[i], ht[j]) * (j - i);
        res = Math.max(res, cap);
        // 向内移动短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
max_capacity.cpp
/* 最大容量:贪心 */
int maxCapacity(vector<int> &ht) {
    // 初始化 i, j 分列数组两端
    int i = 0, j = ht.size() - 1;
    // 初始最大容量为 0
    int res = 0;
    // 循环贪心选择,直至两板相遇
    while (i < j) {
        // 更新最大容量
        int cap = min(ht[i], ht[j]) * (j - i);
        res = max(res, cap);
        // 向内移动短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
max_capacity.py
def max_capacity(ht: list[int]) -> int:
    """最大容量:贪心"""
    # 初始化 i, j 分列数组两端
    i, j = 0, len(ht) - 1
    # 初始最大容量为 0
    res = 0
    # 循环贪心选择,直至两板相遇
    while i < j:
        # 更新最大容量
        cap = min(ht[i], ht[j]) * (j - i)
        res = max(res, cap)
        # 向内移动短板
        if ht[i] < ht[j]:
            i += 1
        else:
            j -= 1
    return res
max_capacity.go
[class]{}-[func]{maxCapacity}
max_capacity.js
[class]{}-[func]{maxCapacity}
max_capacity.ts
[class]{}-[func]{maxCapacity}
max_capacity.c
[class]{}-[func]{maxCapacity}
max_capacity.cs
[class]{max_capacity}-[func]{maxCapacity}
max_capacity.swift
[class]{}-[func]{maxCapacity}
max_capacity.zig
[class]{}-[func]{maxCapacity}
max_capacity.dart
[class]{}-[func]{maxCapacity}

第三步:正确性证明

之所以贪心比穷举更快,是因为每轮的贪心选择都会“跳过”一些状态。

比如在状态 \(cap[i, j]\) 下,\(i\) 为短板、\(j\) 为长板。若贪心地将短板 \(i\) 向内移动一格,会导致以下状态被“跳过”,意味着之后无法验证这些状态的容量大小

\[ cap[i, i+1], cap[i, i+2], \cdots, cap[i, j-2], cap[i, j-1] \]

移动短板导致被跳过的状态

Fig. 移动短板导致被跳过的状态

观察发现,这些被跳过的状态实际上就是将长板 \(j\) 向内移动的所有状态。而在第二步中,我们已经证明内移长板一定会导致容量变小,也就是说这些被跳过的状态的容量一定更小。

也就是说,被跳过的状态都不可能是最优解,跳过它们不会导致错过最优解

以上的分析说明,移动短板的操作是“安全”的,贪心策略是有效的。

评论