13.1. 初探动态规划¶
「动态规划 Dynamic Programming」是一种用于解决复杂问题的优化算法,它把一个问题分解为一系列更小的子问题,并把子问题的解存储起来以供后续使用,从而避免了重复计算,提升了解题效率。
在本节中,我们先从一个动态规划的经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再一步步导出更高效的动态规划解法。
爬楼梯
给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,请问有多少种方案可以爬到楼顶。
如下图所示,对于一个 \(3\) 阶楼梯,共有 \(3\) 种方案可以爬到楼顶。
Fig. 爬到第 3 阶的方案数量
本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 \(1\) 阶或 \(2\) 阶,每当到达楼梯顶部时就将方案数量加 \(1\) ,当越过楼梯顶部时就将其剪枝。
/* 回溯 */
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res.set(0, res.get(0) + 1);
// 遍历所有选择
for (Integer choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
break;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
List<Integer> choices = Arrays.asList(1, 2); // 可选择向上爬 1 或 2 阶
int state = 0; // 从第 0 阶开始爬
List<Integer> res = new ArrayList<>();
res.add(0); // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res.get(0);
}
/* 回溯 */
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (auto &choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
break;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
vector<int> choices = {1, 2}; // 可选择向上爬 1 或 2 阶
int state = 0; // 从第 0 阶开始爬
vector<int> res = {0}; // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
"""回溯"""
# 当爬到第 n 阶时,方案数量加 1
if state == n:
res[0] += 1
# 遍历所有选择
for choice in choices:
# 剪枝:不允许越过第 n 阶
if state + choice > n:
break
# 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res)
# 回退
def climbing_stairs_backtrack(n: int) -> int:
"""爬楼梯:回溯"""
choices = [1, 2] # 可选择向上爬 1 或 2 阶
state = 0 # 从第 0 阶开始爬
res = [0] # 使用 res[0] 记录方案数量
backtrack(choices, state, n, res)
return res[0]
13.1.1. 方法一:暴力搜索¶
回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。
对于本题,我们可以尝试将问题拆解为更小的子问题。设爬到第 \(i\) 阶共有 \(dp[i]\) 种方案,那么 \(dp[i]\) 就是原问题,其子问题包括:
由于每轮只能上 \(1\) 阶或 \(2\) 阶,因此当我们站在第 \(i\) 阶楼梯上时,上一轮只可能站在第 \(i - 1\) 阶或第 \(i - 2\) 阶上,换句话说,我们只能从第 \(i -1\) 阶或第 \(i - 2\) 阶前往第 \(i\) 阶。因此,爬到第 \(i - 1\) 阶的方案数加上爬到第 \(i - 2\) 阶的方案数就等于爬到第 \(i\) 阶的方案数,即:
Fig. 方案数量递推关系
也就是说,在爬楼梯问题中,各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成。
我们可以基于此递推公式写出暴力搜索代码:以 \(dp[n]\) 为起始点,从顶至底地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 \(dp[1]\) 和 \(dp[2]\) 时返回。其中,最小子问题的解是已知的,即爬到第 \(1\) , \(2\) 阶分别有 \(1\) , \(2\) 种方案。
观察以下代码,它与回溯解法都属于深度优先搜索,但比回溯算法更加简洁。
下图展示了该方法形成的递归树。对于问题 \(dp[n]\) ,递归树的深度为 \(n\) ,时间复杂度为 \(O(2^n)\) 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 \(n\) ,则会陷入漫长的等待之中。
Fig. 爬楼梯对应递归树
实际上,指数阶的时间复杂度是由于「重叠子问题」导致的。例如,问题 \(dp[9]\) 被分解为子问题 \(dp[8]\) 和 \(dp[7]\) ,问题 \(dp[8]\) 被分解为子问题 \(dp[7]\) 和 \(dp[6]\) ,两者都包含子问题 \(dp[7]\) ,而子问题中又包含更小的重叠子问题,子子孙孙无穷尽也,绝大部分计算资源都浪费在这些重叠的问题上。
13.1.2. 方法二:记忆化搜索¶
为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。具体来说,考虑借助一个数组 mem
来记录每个子问题的解,并在搜索过程中这样做:
- 当首次计算 \(dp[i]\) 时,我们将其记录至
mem[i]
,以便之后使用; - 当再次需要计算 \(dp[i]\) 时,我们便可直接从
mem[i]
中获取结果,从而将重叠子问题剪枝;
/* 记忆化搜索 */
int dfs(int i, int[] mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
int[] mem = new int[n + 1];
Arrays.fill(mem, -1);
return dfs(n, mem);
}
/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
vector<int> mem(n + 1, -1);
return dfs(n, mem);
}
def dfs(i: int, mem: list[int]) -> int:
"""记忆化搜索"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1:
return mem[i]
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1, mem) + dfs(i - 2, mem)
# 记录 dp[i]
mem[i] = count
return count
def climbing_stairs_dfs_mem(n: int) -> int:
"""爬楼梯:记忆化搜索"""
# mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
mem = [-1] * (n + 1)
return dfs(n, mem)
观察下图,经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 \(O(n)\) ,这是一个巨大的飞跃。实际上,如果不考虑递归带来的额外开销,记忆化搜索解法已经几乎等同于动态规划解法的时间效率。
Fig. 记忆化搜索对应递归树
13.1.3. 方法三:动态规划¶
记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点);最终通过回溯将子问题的解逐层收集,得到原问题的解。
我们也可以直接“从底至顶”进行求解,得到标准的动态规划解法:从最小子问题开始,迭代地求解较大子问题,直至得到原问题的解。
由于动态规划不包含回溯过程,因此无需使用递归,而可以直接基于递推实现。我们初始化一个数组 dp
来存储子问题的解,从最小子问题开始,逐步求解较大子问题。在以下代码中,数组 dp
起到了记忆化搜索中数组 mem
相同的记录作用。
与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数。动态规划的常用术语包括:
- 将 \(dp\) 数组称为「状态列表」,\(dp[i]\) 代表第 \(i\) 个状态的解;
- 将最简单子问题对应的状态(即第 \(1\) , \(2\) 阶楼梯)称为「初始状态」;
- 将递推公式 \(dp[i] = dp[i-1] + dp[i-2]\) 称为「状态转移方程」;
Fig. 爬楼梯的动态规划过程
细心的你可能发现,由于 \(dp[i]\) 只与 \(dp[i-1]\) 和 \(dp[i-2]\) 有关,因此我们无需使用一个数组 dp
来存储所有状态,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 dp
占用的空间,因此空间复杂度从 \(O(n)\) 降低至 \(O(1)\) 。
我们将这种空间优化技巧称为「状态压缩」。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。
总的看来,子问题分解是一种通用的算法思路,在分治算法、动态规划、回溯算法中各有特点:
- 分治算法将原问题划分为几个独立的子问题,然后递归解决子问题,最后合并子问题的解得到原问题的解。例如,归并排序将长数组不断划分为两个短子数组,再将排序好的子数组合并为排序好的长数组。
- 动态规划也是将原问题分解为多个子问题,但与分治算法的主要区别是,动态规划中的子问题往往不是相互独立的,原问题的解依赖于子问题的解,而子问题的解又依赖于更小的子问题的解。因此,动态规划通常会引入记忆化,保存已经解决的子问题的解,避免重复计算。
- 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之后的剩余问题看作为一个子问题。