# 初探动态规划 「动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。 在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。 !!! question "爬楼梯" 给定一个共有 $n$ 阶的楼梯,你每步可以上 $1$ 阶或者 $2$ 阶,请问有多少种方案可以爬到楼顶。 如下图所示,对于一个 $3$ 阶楼梯,共有 $3$ 种方案可以爬到楼顶。 ![爬到第 3 阶的方案数量](intro_to_dynamic_programming.assets/climbing_stairs_example.png) 本题的目标是求解方案数量,**我们可以考虑通过回溯来穷举所有可能性**。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 $1$ 阶或 $2$ 阶,每当到达楼梯顶部时就将方案数量加 $1$ ,当越过楼梯顶部时就将其剪枝。 === "Python" ```python title="climbing_stairs_backtrack.py" [class]{}-[func]{backtrack} [class]{}-[func]{climbing_stairs_backtrack} ``` === "C++" ```cpp title="climbing_stairs_backtrack.cpp" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Java" ```java title="climbing_stairs_backtrack.java" [class]{climbing_stairs_backtrack}-[func]{backtrack} [class]{climbing_stairs_backtrack}-[func]{climbingStairsBacktrack} ``` === "C#" ```csharp title="climbing_stairs_backtrack.cs" [class]{climbing_stairs_backtrack}-[func]{backtrack} [class]{climbing_stairs_backtrack}-[func]{climbingStairsBacktrack} ``` === "Go" ```go title="climbing_stairs_backtrack.go" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Swift" ```swift title="climbing_stairs_backtrack.swift" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "JS" ```javascript title="climbing_stairs_backtrack.js" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "TS" ```typescript title="climbing_stairs_backtrack.ts" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Dart" ```dart title="climbing_stairs_backtrack.dart" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Rust" ```rust title="climbing_stairs_backtrack.rs" [class]{}-[func]{backtrack} [class]{}-[func]{climbing_stairs_backtrack} ``` === "C" ```c title="climbing_stairs_backtrack.c" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Zig" ```zig title="climbing_stairs_backtrack.zig" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` ## 方法一:暴力搜索 回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。 我们可以尝试从问题分解的角度分析这道题。设爬到第 $i$ 阶共有 $dp[i]$ 种方案,那么 $dp[i]$ 就是原问题,其子问题包括: $$ dp[i-1], dp[i-2], \dots, dp[2], dp[1] $$ 由于每轮只能上 $1$ 阶或 $2$ 阶,因此当我们站在第 $i$ 阶楼梯上时,上一轮只可能站在第 $i - 1$ 阶或第 $i - 2$ 阶上。换句话说,我们只能从第 $i -1$ 阶或第 $i - 2$ 阶前往第 $i$ 阶。 由此便可得出一个重要推论:**爬到第 $i - 1$ 阶的方案数加上爬到第 $i - 2$ 阶的方案数就等于爬到第 $i$ 阶的方案数**。公式如下: $$ dp[i] = dp[i-1] + dp[i-2] $$ 这意味着在爬楼梯问题中,各个子问题之间存在递推关系,**原问题的解可以由子问题的解构建得来**。下图展示了该递推关系。 ![方案数量递推关系](intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png) 我们可以根据递推公式得到暴力搜索解法。以 $dp[n]$ 为起始点,**递归地将一个较大问题拆解为两个较小问题的和**,直至到达最小子问题 $dp[1]$ 和 $dp[2]$ 时返回。其中,最小子问题的解是已知的,即 $dp[1] = 1$、$dp[2] = 2$ ,表示爬到第 $1$、$2$ 阶分别有 $1$、$2$ 种方案。 观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。 === "Python" ```python title="climbing_stairs_dfs.py" [class]{}-[func]{dfs} [class]{}-[func]{climbing_stairs_dfs} ``` === "C++" ```cpp title="climbing_stairs_dfs.cpp" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Java" ```java title="climbing_stairs_dfs.java" [class]{climbing_stairs_dfs}-[func]{dfs} [class]{climbing_stairs_dfs}-[func]{climbingStairsDFS} ``` === "C#" ```csharp title="climbing_stairs_dfs.cs" [class]{climbing_stairs_dfs}-[func]{dfs} [class]{climbing_stairs_dfs}-[func]{climbingStairsDFS} ``` === "Go" ```go title="climbing_stairs_dfs.go" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Swift" ```swift title="climbing_stairs_dfs.swift" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "JS" ```javascript title="climbing_stairs_dfs.js" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "TS" ```typescript title="climbing_stairs_dfs.ts" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Dart" ```dart title="climbing_stairs_dfs.dart" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Rust" ```rust title="climbing_stairs_dfs.rs" [class]{}-[func]{dfs} [class]{}-[func]{climbing_stairs_dfs} ``` === "C" ```c title="climbing_stairs_dfs.c" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Zig" ```zig title="climbing_stairs_dfs.zig" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` 下图展示了暴力搜索形成的递归树。对于问题 $dp[n]$ ,其递归树的深度为 $n$ ,时间复杂度为 $O(2^n)$ 。指数阶属于爆炸式增长,如果我们输入一个比较大的 $n$ ,则会陷入漫长的等待之中。 ![爬楼梯对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png) 观察上图,**指数阶的时间复杂度是由于“重叠子问题”导致的**。例如 $dp[9]$ 被分解为 $dp[8]$ 和 $dp[7]$ ,$dp[8]$ 被分解为 $dp[7]$ 和 $dp[6]$ ,两者都包含子问题 $dp[7]$ 。 以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的问题上。 ## 方法二:记忆化搜索 为了提升算法效率,**我们希望所有的重叠子问题都只被计算一次**。为此,我们声明一个数组 `mem` 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。 1. 当首次计算 $dp[i]$ 时,我们将其记录至 `mem[i]` ,以便之后使用。 2. 当再次需要计算 $dp[i]$ 时,我们便可直接从 `mem[i]` 中获取结果,从而避免重复计算该子问题。 === "Python" ```python title="climbing_stairs_dfs_mem.py" [class]{}-[func]{dfs} [class]{}-[func]{climbing_stairs_dfs_mem} ``` === "C++" ```cpp title="climbing_stairs_dfs_mem.cpp" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Java" ```java title="climbing_stairs_dfs_mem.java" [class]{climbing_stairs_dfs_mem}-[func]{dfs} [class]{climbing_stairs_dfs_mem}-[func]{climbingStairsDFSMem} ``` === "C#" ```csharp title="climbing_stairs_dfs_mem.cs" [class]{climbing_stairs_dfs_mem}-[func]{dfs} [class]{climbing_stairs_dfs_mem}-[func]{climbingStairsDFSMem} ``` === "Go" ```go title="climbing_stairs_dfs_mem.go" [class]{}-[func]{dfsMem} [class]{}-[func]{climbingStairsDFSMem} ``` === "Swift" ```swift title="climbing_stairs_dfs_mem.swift" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "JS" ```javascript title="climbing_stairs_dfs_mem.js" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "TS" ```typescript title="climbing_stairs_dfs_mem.ts" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Dart" ```dart title="climbing_stairs_dfs_mem.dart" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Rust" ```rust title="climbing_stairs_dfs_mem.rs" [class]{}-[func]{dfs} [class]{}-[func]{climbing_stairs_dfs_mem} ``` === "C" ```c title="climbing_stairs_dfs_mem.c" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Zig" ```zig title="climbing_stairs_dfs_mem.zig" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` 观察下图,**经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 $O(n)$** ,这是一个巨大的飞跃。 ![记忆化搜索对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png) ## 方法三:动态规划 **记忆化搜索是一种“从顶至底”的方法**:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯将子问题的解逐层收集,构建出原问题的解。 与之相反,**动态规划是一种“从底至顶”的方法**:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。 由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 `dp` 来存储子问题的解,它起到了记忆化搜索中数组 `mem` 相同的记录作用。 === "Python" ```python title="climbing_stairs_dp.py" [class]{}-[func]{climbing_stairs_dp} ``` === "C++" ```cpp title="climbing_stairs_dp.cpp" [class]{}-[func]{climbingStairsDP} ``` === "Java" ```java title="climbing_stairs_dp.java" [class]{climbing_stairs_dp}-[func]{climbingStairsDP} ``` === "C#" ```csharp title="climbing_stairs_dp.cs" [class]{climbing_stairs_dp}-[func]{climbingStairsDP} ``` === "Go" ```go title="climbing_stairs_dp.go" [class]{}-[func]{climbingStairsDP} ``` === "Swift" ```swift title="climbing_stairs_dp.swift" [class]{}-[func]{climbingStairsDP} ``` === "JS" ```javascript title="climbing_stairs_dp.js" [class]{}-[func]{climbingStairsDP} ``` === "TS" ```typescript title="climbing_stairs_dp.ts" [class]{}-[func]{climbingStairsDP} ``` === "Dart" ```dart title="climbing_stairs_dp.dart" [class]{}-[func]{climbingStairsDP} ``` === "Rust" ```rust title="climbing_stairs_dp.rs" [class]{}-[func]{climbing_stairs_dp} ``` === "C" ```c title="climbing_stairs_dp.c" [class]{}-[func]{climbingStairsDP} ``` === "Zig" ```zig title="climbing_stairs_dp.zig" [class]{}-[func]{climbingStairsDP} ``` 下图模拟了以上代码的执行过程。 ![爬楼梯的动态规划过程](intro_to_dynamic_programming.assets/climbing_stairs_dp.png) 与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 $i$ 。 根据以上内容,我们可以总结出动态规划的常用术语。 - 将数组 `dp` 称为「$dp$ 表」,$dp[i]$ 表示状态 $i$ 对应子问题的解。 - 将最小子问题对应的状态(即第 $1$ 和 $2$ 阶楼梯)称为「初始状态」。 - 将递推公式 $dp[i] = dp[i-1] + dp[i-2]$ 称为「状态转移方程」。 ## 空间优化 细心的你可能发现,**由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无须使用一个数组 `dp` 来存储所有子问题的解**,而只需两个变量滚动前进即可。 === "Python" ```python title="climbing_stairs_dp.py" [class]{}-[func]{climbing_stairs_dp_comp} ``` === "C++" ```cpp title="climbing_stairs_dp.cpp" [class]{}-[func]{climbingStairsDPComp} ``` === "Java" ```java title="climbing_stairs_dp.java" [class]{climbing_stairs_dp}-[func]{climbingStairsDPComp} ``` === "C#" ```csharp title="climbing_stairs_dp.cs" [class]{climbing_stairs_dp}-[func]{climbingStairsDPComp} ``` === "Go" ```go title="climbing_stairs_dp.go" [class]{}-[func]{climbingStairsDPComp} ``` === "Swift" ```swift title="climbing_stairs_dp.swift" [class]{}-[func]{climbingStairsDPComp} ``` === "JS" ```javascript title="climbing_stairs_dp.js" [class]{}-[func]{climbingStairsDPComp} ``` === "TS" ```typescript title="climbing_stairs_dp.ts" [class]{}-[func]{climbingStairsDPComp} ``` === "Dart" ```dart title="climbing_stairs_dp.dart" [class]{}-[func]{climbingStairsDPComp} ``` === "Rust" ```rust title="climbing_stairs_dp.rs" [class]{}-[func]{climbing_stairs_dp_comp} ``` === "C" ```c title="climbing_stairs_dp.c" [class]{}-[func]{climbingStairsDPComp} ``` === "Zig" ```zig title="climbing_stairs_dp.zig" [class]{}-[func]{climbingStairsDPComp} ``` 观察以上代码,由于省去了数组 `dp` 占用的空间,因此空间复杂度从 $O(n)$ 降低至 $O(1)$ 。 在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。**这种空间优化技巧被称为“滚动变量”或“滚动数组”**。