# 哈希算法 在上两节中,我们了解了哈希表的工作原理和哈希冲突的处理方法。然而无论是开放寻址还是链地址法,**它们只能保证哈希表可以在发生冲突时正常工作,但无法减少哈希冲突的发生**。 如果哈希冲突过于频繁,哈希表的性能则会急剧劣化。如下图所示,对于链地址哈希表,理想情况下键值对平均分布在各个桶中,达到最佳查询效率;最差情况下所有键值对都被存储到同一个桶中,时间复杂度退化至 $O(n)$ 。 ![哈希冲突的最佳与最差情况](hash_algorithm.assets/hash_collision_best_worst_condition.png) **键值对的分布情况由哈希函数决定**。回忆哈希函数的计算步骤,先计算哈希值,再对数组长度取模: ```shell index = hash(key) % capacity ``` 观察以上公式,当哈希表容量 `capacity` 固定时,**哈希算法 `hash()` 决定了输出值**,进而决定了键值对在哈希表中的分布情况。 这意味着,为了减小哈希冲突的发生概率,我们应当将注意力集中在哈希算法 `hash()` 的设计上。 ## 哈希算法的目标 为了实现“既快又稳”的哈希表数据结构,哈希算法应包含以下特点。 - **确定性**:对于相同的输入,哈希算法应始终产生相同的输出。这样才能确保哈希表是可靠的。 - **效率高**:计算哈希值的过程应该足够快。计算开销越小,哈希表的实用性越高。 - **均匀分布**:哈希算法应使得键值对平均分布在哈希表中。分布越平均,哈希冲突的概率就越低。 实际上,哈希算法除了可以用于实现哈希表,还广泛应用于其他领域中。 - **密码存储**:为了保护用户密码的安全,系统通常不会直接存储用户的明文密码,而是存储密码的哈希值。当用户输入密码时,系统会对输入的密码计算哈希值,然后与存储的哈希值进行比较。如果两者匹配,那么密码就被视为正确。 - **数据完整性检查**:数据发送方可以计算数据的哈希值并将其一同发送;接收方可以重新计算接收到的数据的哈希值,并与接收到的哈希值进行比较。如果两者匹配,那么数据就被视为完整的。 对于密码学的相关应用,为了防止从哈希值推导出原始密码等逆向工程,哈希算法需要具备更高等级的安全特性。 - **抗碰撞性**:应当极其困难找到两个不同的输入,使得它们的哈希值相同。 - **雪崩效应**:输入的微小变化应当导致输出的显著且不可预测的变化。 请注意,**“均匀分布”与“抗碰撞性”是两个独立的概念**,满足均匀分布不一定满足抗碰撞性。例如,在随机输入 `key` 下,哈希函数 `key % 100` 可以产生均匀分布的输出。然而该哈希算法过于简单,所有后两位相等的 `key` 的输出都相同,因此我们可以很容易地从哈希值反推出可用的 `key` ,从而破解密码。 ## 哈希算法的设计 哈希算法的设计是一个需要考虑许多因素的复杂问题。然而对于某些要求不高的场景,我们也能设计一些简单的哈希算法。 - **加法哈希**:对输入的每个字符的 ASCII 码进行相加,将得到的总和作为哈希值。 - **乘法哈希**:利用了乘法的不相关性,每轮乘以一个常数,将各个字符的 ASCII 码累积到哈希值中。 - **异或哈希**:将输入数据的每个元素通过异或操作累积到一个哈希值中。 - **旋转哈希**:将每个字符的 ASCII 码累积到一个哈希值中,每次累积之前都会对哈希值进行旋转操作。 === "Python" ```python title="simple_hash.py" [class]{}-[func]{add_hash} [class]{}-[func]{mul_hash} [class]{}-[func]{xor_hash} [class]{}-[func]{rot_hash} ``` === "C++" ```cpp title="simple_hash.cpp" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Java" ```java title="simple_hash.java" [class]{simple_hash}-[func]{addHash} [class]{simple_hash}-[func]{mulHash} [class]{simple_hash}-[func]{xorHash} [class]{simple_hash}-[func]{rotHash} ``` === "C#" ```csharp title="simple_hash.cs" [class]{simple_hash}-[func]{addHash} [class]{simple_hash}-[func]{mulHash} [class]{simple_hash}-[func]{xorHash} [class]{simple_hash}-[func]{rotHash} ``` === "Go" ```go title="simple_hash.go" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Swift" ```swift title="simple_hash.swift" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "JS" ```javascript title="simple_hash.js" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "TS" ```typescript title="simple_hash.ts" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Dart" ```dart title="simple_hash.dart" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Rust" ```rust title="simple_hash.rs" [class]{}-[func]{add_hash} [class]{}-[func]{mul_hash} [class]{}-[func]{xor_hash} [class]{}-[func]{rot_hash} ``` === "C" ```c title="simple_hash.c" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` === "Zig" ```zig title="simple_hash.zig" [class]{}-[func]{addHash} [class]{}-[func]{mulHash} [class]{}-[func]{xorHash} [class]{}-[func]{rotHash} ``` 观察发现,每种哈希算法的最后一步都是对大质数 $1000000007$ 取模,以确保哈希值在合适的范围内。值得思考的是,为什么要强调对质数取模,或者说对合数取模的弊端是什么?这是一个有趣的问题。 先抛出结论:**当我们使用大质数作为模数时,可以最大化地保证哈希值的均匀分布**。因为质数不会与其他数字存在公约数,可以减少因取模操作而产生的周期性模式,从而避免哈希冲突。 举个例子,假设我们选择合数 $9$ 作为模数,它可以被 $3$ 整除。那么所有可以被 $3$ 整除的 `key` 都会被映射到 $0$、$3$、$6$ 这三个哈希值。 $$ \begin{aligned} \text{modulus} & = 9 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\dots \} \end{aligned} $$ 如果输入 `key` 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假设将 `modulus` 替换为质数 $13$ ,由于 `key` 和 `modulus` 之间不存在公约数,输出的哈希值的均匀性会明显提升。 $$ \begin{aligned} \text{modulus} & = 13 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \dots \} \end{aligned} $$ 值得说明的是,如果能够保证 `key` 是随机均匀分布的,那么选择质数或者合数作为模数都是可以的,它们都能输出均匀分布的哈希值。而当 `key` 的分布存在某种周期性时,对合数取模更容易出现聚集现象。 总而言之,我们通常选取质数作为模数,并且这个质数最好足够大,以尽可能消除周期性模式,提升哈希算法的稳健性。 ## 常见哈希算法 不难发现,以上介绍的简单哈希算法都比较“脆弱”,远远没有达到哈希算法的设计目标。例如,由于加法和异或满足交换律,因此加法哈希和异或哈希无法区分内容相同但顺序不同的字符串,这可能会加剧哈希冲突,并引起一些安全问题。 在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA-1、SHA-2、SHA3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。 近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一部分研究人员和黑客则致力于寻找哈希算法的安全性问题。下表展示了在实际应用中常见的哈希算法。 - MD5 和 SHA-1 已多次被成功攻击,因此它们被各类安全应用弃用。 - SHA-2 系列中的 SHA-256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常被用在各类安全应用与协议中。 - SHA-3 相较 SHA-2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA-2 系列。
表