Skip to content

7.2   Binary tree traversal

From the perspective of physical structure, a tree is a data structure based on linked lists, hence its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms to achieve.

Common traversal methods for binary trees include level-order traversal, preorder traversal, inorder traversal, and postorder traversal, among others.

7.2.1   Level-order traversal

As shown in the Figure 7-9 , "level-order traversal" traverses the binary tree from top to bottom, layer by layer, and accesses nodes in each layer in a left-to-right order.

Level-order traversal essentially belongs to "breadth-first traversal", also known as "breadth-first search (BFS)", which embodies a "circumferentially outward expanding" layer-by-layer traversal method.

Level-order traversal of a binary tree

Figure 7-9   Level-order traversal of a binary tree

1.   Code implementation

Breadth-first traversal is usually implemented with the help of a "queue". The queue follows the "first in, first out" rule, while breadth-first traversal follows the "layer-by-layer progression" rule, the underlying ideas of the two are consistent. The implementation code is as follows:

binary_tree_bfs.py
def level_order(root: TreeNode | None) -> list[int]:
    """层序遍历"""
    # 初始化队列,加入根节点
    queue: deque[TreeNode] = deque()
    queue.append(root)
    # 初始化一个列表,用于保存遍历序列
    res = []
    while queue:
        node: TreeNode = queue.popleft()  # 队列出队
        res.append(node.val)  # 保存节点值
        if node.left is not None:
            queue.append(node.left)  # 左子节点入队
        if node.right is not None:
            queue.append(node.right)  # 右子节点入队
    return res
binary_tree_bfs.cpp
/* 层序遍历 */
vector<int> levelOrder(TreeNode *root) {
    // 初始化队列,加入根节点
    queue<TreeNode *> queue;
    queue.push(root);
    // 初始化一个列表,用于保存遍历序列
    vector<int> vec;
    while (!queue.empty()) {
        TreeNode *node = queue.front();
        queue.pop();              // 队列出队
        vec.push_back(node->val); // 保存节点值
        if (node->left != nullptr)
            queue.push(node->left); // 左子节点入队
        if (node->right != nullptr)
            queue.push(node->right); // 右子节点入队
    }
    return vec;
}
binary_tree_bfs.java
/* 层序遍历 */
List<Integer> levelOrder(TreeNode root) {
    // 初始化队列,加入根节点
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    // 初始化一个列表,用于保存遍历序列
    List<Integer> list = new ArrayList<>();
    while (!queue.isEmpty()) {
        TreeNode node = queue.poll(); // 队列出队
        list.add(node.val);           // 保存节点值
        if (node.left != null)
            queue.offer(node.left);   // 左子节点入队
        if (node.right != null)
            queue.offer(node.right);  // 右子节点入队
    }
    return list;
}
binary_tree_bfs.cs
/* 层序遍历 */
List<int> LevelOrder(TreeNode root) {
    // 初始化队列,加入根节点
    Queue<TreeNode> queue = new();
    queue.Enqueue(root);
    // 初始化一个列表,用于保存遍历序列
    List<int> list = [];
    while (queue.Count != 0) {
        TreeNode node = queue.Dequeue(); // 队列出队
        list.Add(node.val!.Value);       // 保存节点值
        if (node.left != null)
            queue.Enqueue(node.left);    // 左子节点入队
        if (node.right != null)
            queue.Enqueue(node.right);   // 右子节点入队
    }
    return list;
}
binary_tree_bfs.go
/* 层序遍历 */
func levelOrder(root *TreeNode) []any {
    // 初始化队列,加入根节点
    queue := list.New()
    queue.PushBack(root)
    // 初始化一个切片,用于保存遍历序列
    nums := make([]any, 0)
    for queue.Len() > 0 {
        // 队列出队
        node := queue.Remove(queue.Front()).(*TreeNode)
        // 保存节点值
        nums = append(nums, node.Val)
        if node.Left != nil {
            // 左子节点入队
            queue.PushBack(node.Left)
        }
        if node.Right != nil {
            // 右子节点入队
            queue.PushBack(node.Right)
        }
    }
    return nums
}
binary_tree_bfs.swift
/* 层序遍历 */
func levelOrder(root: TreeNode) -> [Int] {
    // 初始化队列,加入根节点
    var queue: [TreeNode] = [root]
    // 初始化一个列表,用于保存遍历序列
    var list: [Int] = []
    while !queue.isEmpty {
        let node = queue.removeFirst() // 队列出队
        list.append(node.val) // 保存节点值
        if let left = node.left {
            queue.append(left) // 左子节点入队
        }
        if let right = node.right {
            queue.append(right) // 右子节点入队
        }
    }
    return list
}
binary_tree_bfs.js
/* 层序遍历 */
function levelOrder(root) {
    // 初始化队列,加入根节点
    const queue = [root];
    // 初始化一个列表,用于保存遍历序列
    const list = [];
    while (queue.length) {
        let node = queue.shift(); // 队列出队
        list.push(node.val); // 保存节点值
        if (node.left) queue.push(node.left); // 左子节点入队
        if (node.right) queue.push(node.right); // 右子节点入队
    }
    return list;
}
binary_tree_bfs.ts
/* 层序遍历 */
function levelOrder(root: TreeNode | null): number[] {
    // 初始化队列,加入根节点
    const queue = [root];
    // 初始化一个列表,用于保存遍历序列
    const list: number[] = [];
    while (queue.length) {
        let node = queue.shift() as TreeNode; // 队列出队
        list.push(node.val); // 保存节点值
        if (node.left) {
            queue.push(node.left); // 左子节点入队
        }
        if (node.right) {
            queue.push(node.right); // 右子节点入队
        }
    }
    return list;
}
binary_tree_bfs.dart
/* 层序遍历 */
List<int> levelOrder(TreeNode? root) {
  // 初始化队列,加入根节点
  Queue<TreeNode?> queue = Queue();
  queue.add(root);
  // 初始化一个列表,用于保存遍历序列
  List<int> res = [];
  while (queue.isNotEmpty) {
    TreeNode? node = queue.removeFirst(); // 队列出队
    res.add(node!.val); // 保存节点值
    if (node.left != null) queue.add(node.left); // 左子节点入队
    if (node.right != null) queue.add(node.right); // 右子节点入队
  }
  return res;
}
binary_tree_bfs.rs
/* 层序遍历 */
fn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {
    // 初始化队列,加入根节点
    let mut que = VecDeque::new();
    que.push_back(Rc::clone(&root));
    // 初始化一个列表,用于保存遍历序列
    let mut vec = Vec::new();

    while let Some(node) = que.pop_front() {
        // 队列出队
        vec.push(node.borrow().val); // 保存节点值
        if let Some(left) = node.borrow().left.as_ref() {
            que.push_back(Rc::clone(left)); // 左子节点入队
        }
        if let Some(right) = node.borrow().right.as_ref() {
            que.push_back(Rc::clone(right)); // 右子节点入队
        };
    }
    vec
}
binary_tree_bfs.c
/* 层序遍历 */
int *levelOrder(TreeNode *root, int *size) {
    /* 辅助队列 */
    int front, rear;
    int index, *arr;
    TreeNode *node;
    TreeNode **queue;

    /* 辅助队列 */
    queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);
    // 队列指针
    front = 0, rear = 0;
    // 加入根节点
    queue[rear++] = root;
    // 初始化一个列表,用于保存遍历序列
    /* 辅助数组 */
    arr = (int *)malloc(sizeof(int) * MAX_SIZE);
    // 数组指针
    index = 0;
    while (front < rear) {
        // 队列出队
        node = queue[front++];
        // 保存节点值
        arr[index++] = node->val;
        if (node->left != NULL) {
            // 左子节点入队
            queue[rear++] = node->left;
        }
        if (node->right != NULL) {
            // 右子节点入队
            queue[rear++] = node->right;
        }
    }
    // 更新数组长度的值
    *size = index;
    arr = realloc(arr, sizeof(int) * (*size));

    // 释放辅助数组空间
    free(queue);
    return arr;
}
binary_tree_bfs.kt
/* 层序遍历 */
fun levelOrder(root: TreeNode?): MutableList<Int> {
    // 初始化队列,加入根节点
    val queue = LinkedList<TreeNode?>()
    queue.add(root)
    // 初始化一个列表,用于保存遍历序列
    val list = ArrayList<Int>()
    while (!queue.isEmpty()) {
        val node = queue.poll() // 队列出队
        list.add(node?.value!!) // 保存节点值
        if (node.left != null) queue.offer(node.left) // 左子节点入队

        if (node.right != null) queue.offer(node.right) // 右子节点入队
    }
    return list
}
binary_tree_bfs.rb
[class]{}-[func]{level_order}
binary_tree_bfs.zig
// 层序遍历
fn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {
    // 初始化队列,加入根节点
    const L = std.TailQueue(*inc.TreeNode(T));
    var queue = L{};
    var root_node = try mem_allocator.create(L.Node);
    root_node.data = root;
    queue.append(root_node); 
    // 初始化一个列表,用于保存遍历序列
    var list = std.ArrayList(T).init(std.heap.page_allocator);
    while (queue.len > 0) {
        var queue_node = queue.popFirst().?;    // 队列出队
        var node = queue_node.data;
        try list.append(node.val);              // 保存节点值
        if (node.left != null) {
            var tmp_node = try mem_allocator.create(L.Node);
            tmp_node.data = node.left.?;
            queue.append(tmp_node);             // 左子节点入队
        }
        if (node.right != null) {
            var tmp_node = try mem_allocator.create(L.Node);
            tmp_node.data = node.right.?;
            queue.append(tmp_node);             // 右子节点入队
        }        
    }
    return list;
}
Code Visualization

2.   Complexity analysis

  • Time complexity is \(O(n)\): All nodes are visited once, using \(O(n)\) time, where \(n\) is the number of nodes.
  • Space complexity is \(O(n)\): In the worst case, i.e., a full binary tree, before traversing to the lowest level, the queue can contain at most \((n + 1) / 2\) nodes at the same time, occupying \(O(n)\) space.

7.2.2   Preorder, inorder, and postorder traversal

Correspondingly, preorder, inorder, and postorder traversal all belong to "depth-first traversal", also known as "depth-first search (DFS)", which embodies a "proceed to the end first, then backtrack and continue" traversal method.

The Figure 7-10 shows the working principle of performing a depth-first traversal on a binary tree. Depth-first traversal is like walking around the perimeter of the entire binary tree, encountering three positions at each node, corresponding to preorder traversal, inorder traversal, and postorder traversal.

Preorder, inorder, and postorder traversal of a binary search tree

Figure 7-10   Preorder, inorder, and postorder traversal of a binary search tree

1.   Code implementation

Depth-first search is usually implemented based on recursion:

binary_tree_dfs.py
def pre_order(root: TreeNode | None):
    """前序遍历"""
    if root is None:
        return
    # 访问优先级:根节点 -> 左子树 -> 右子树
    res.append(root.val)
    pre_order(root=root.left)
    pre_order(root=root.right)

def in_order(root: TreeNode | None):
    """中序遍历"""
    if root is None:
        return
    # 访问优先级:左子树 -> 根节点 -> 右子树
    in_order(root=root.left)
    res.append(root.val)
    in_order(root=root.right)

def post_order(root: TreeNode | None):
    """后序遍历"""
    if root is None:
        return
    # 访问优先级:左子树 -> 右子树 -> 根节点
    post_order(root=root.left)
    post_order(root=root.right)
    res.append(root.val)
binary_tree_dfs.cpp
/* 前序遍历 */
void preOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    vec.push_back(root->val);
    preOrder(root->left);
    preOrder(root->right);
}

/* 中序遍历 */
void inOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left);
    vec.push_back(root->val);
    inOrder(root->right);
}

/* 后序遍历 */
void postOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
}
binary_tree_dfs.java
/* 前序遍历 */
void preOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.add(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
void inOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root.left);
    list.add(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
void postOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root.left);
    postOrder(root.right);
    list.add(root.val);
}
binary_tree_dfs.cs
/* 前序遍历 */
void PreOrder(TreeNode? root) {
    if (root == null) return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.Add(root.val!.Value);
    PreOrder(root.left);
    PreOrder(root.right);
}

/* 中序遍历 */
void InOrder(TreeNode? root) {
    if (root == null) return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    InOrder(root.left);
    list.Add(root.val!.Value);
    InOrder(root.right);
}

/* 后序遍历 */
void PostOrder(TreeNode? root) {
    if (root == null) return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    PostOrder(root.left);
    PostOrder(root.right);
    list.Add(root.val!.Value);
}
binary_tree_dfs.go
/* 前序遍历 */
func preOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:根节点 -> 左子树 -> 右子树
    nums = append(nums, node.Val)
    preOrder(node.Left)
    preOrder(node.Right)
}

/* 中序遍历 */
func inOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(node.Left)
    nums = append(nums, node.Val)
    inOrder(node.Right)
}

/* 后序遍历 */
func postOrder(node *TreeNode) {
    if node == nil {
        return
    }
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(node.Left)
    postOrder(node.Right)
    nums = append(nums, node.Val)
}
binary_tree_dfs.swift
/* 前序遍历 */
func preOrder(root: TreeNode?) {
    guard let root = root else {
        return
    }
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.append(root.val)
    preOrder(root: root.left)
    preOrder(root: root.right)
}

/* 中序遍历 */
func inOrder(root: TreeNode?) {
    guard let root = root else {
        return
    }
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root: root.left)
    list.append(root.val)
    inOrder(root: root.right)
}

/* 后序遍历 */
func postOrder(root: TreeNode?) {
    guard let root = root else {
        return
    }
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root: root.left)
    postOrder(root: root.right)
    list.append(root.val)
}
binary_tree_dfs.js
/* 前序遍历 */
function preOrder(root) {
    if (root === null) return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.push(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
function inOrder(root) {
    if (root === null) return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root.left);
    list.push(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
function postOrder(root) {
    if (root === null) return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root.left);
    postOrder(root.right);
    list.push(root.val);
}
binary_tree_dfs.ts
/* 前序遍历 */
function preOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.push(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
function inOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root.left);
    list.push(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
function postOrder(root: TreeNode | null): void {
    if (root === null) {
        return;
    }
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root.left);
    postOrder(root.right);
    list.push(root.val);
}
binary_tree_dfs.dart
/* 前序遍历 */
void preOrder(TreeNode? node) {
  if (node == null) return;
  // 访问优先级:根节点 -> 左子树 -> 右子树
  list.add(node.val);
  preOrder(node.left);
  preOrder(node.right);
}

/* 中序遍历 */
void inOrder(TreeNode? node) {
  if (node == null) return;
  // 访问优先级:左子树 -> 根节点 -> 右子树
  inOrder(node.left);
  list.add(node.val);
  inOrder(node.right);
}

/* 后序遍历 */
void postOrder(TreeNode? node) {
  if (node == null) return;
  // 访问优先级:左子树 -> 右子树 -> 根节点
  postOrder(node.left);
  postOrder(node.right);
  list.add(node.val);
}
binary_tree_dfs.rs
/* 前序遍历 */
fn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
    let mut result = vec![];

    if let Some(node) = root {
        // 访问优先级:根节点 -> 左子树 -> 右子树
        result.push(node.borrow().val);
        result.append(&mut pre_order(node.borrow().left.as_ref()));
        result.append(&mut pre_order(node.borrow().right.as_ref()));
    }
    result
}

/* 中序遍历 */
fn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
    let mut result = vec![];

    if let Some(node) = root {
        // 访问优先级:左子树 -> 根节点 -> 右子树
        result.append(&mut in_order(node.borrow().left.as_ref()));
        result.push(node.borrow().val);
        result.append(&mut in_order(node.borrow().right.as_ref()));
    }
    result
}

/* 后序遍历 */
fn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
    let mut result = vec![];

    if let Some(node) = root {
        // 访问优先级:左子树 -> 右子树 -> 根节点
        result.append(&mut post_order(node.borrow().left.as_ref()));
        result.append(&mut post_order(node.borrow().right.as_ref()));
        result.push(node.borrow().val);
    }
    result
}
binary_tree_dfs.c
/* 前序遍历 */
void preOrder(TreeNode *root, int *size) {
    if (root == NULL)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    arr[(*size)++] = root->val;
    preOrder(root->left, size);
    preOrder(root->right, size);
}

/* 中序遍历 */
void inOrder(TreeNode *root, int *size) {
    if (root == NULL)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left, size);
    arr[(*size)++] = root->val;
    inOrder(root->right, size);
}

/* 后序遍历 */
void postOrder(TreeNode *root, int *size) {
    if (root == NULL)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left, size);
    postOrder(root->right, size);
    arr[(*size)++] = root->val;
}
binary_tree_dfs.kt
/* 前序遍历 */
fun preOrder(root: TreeNode?) {
    if (root == null) return
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.add(root.value)
    preOrder(root.left)
    preOrder(root.right)
}

/* 中序遍历 */
fun inOrder(root: TreeNode?) {
    if (root == null) return
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root.left)
    list.add(root.value)
    inOrder(root.right)
}

/* 后序遍历 */
fun postOrder(root: TreeNode?) {
    if (root == null) return
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root.left)
    postOrder(root.right)
    list.add(root.value)
}
binary_tree_dfs.rb
[class]{}-[func]{pre_order}

[class]{}-[func]{in_order}

[class]{}-[func]{post_order}
binary_tree_dfs.zig
// 前序遍历
fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
    if (root == null) return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    try list.append(root.?.val);
    try preOrder(T, root.?.left);
    try preOrder(T, root.?.right);
}

// 中序遍历
fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
    if (root == null) return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    try inOrder(T, root.?.left);
    try list.append(root.?.val);
    try inOrder(T, root.?.right);
}

// 后序遍历
fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
    if (root == null) return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    try postOrder(T, root.?.left);
    try postOrder(T, root.?.right);
    try list.append(root.?.val);
}
Code Visualization

Tip

Depth-first search can also be implemented based on iteration, interested readers can study this on their own.

The Figure 7-11 shows the recursive process of preorder traversal of a binary tree, which can be divided into two opposite parts: "recursion" and "return".

  1. "Recursion" means starting a new method, the program accesses the next node in this process.
  2. "Return" means the function returns, indicating the current node has been fully accessed.

The recursive process of preorder traversal

preorder_step2

preorder_step3

preorder_step4

preorder_step5

preorder_step6

preorder_step7

preorder_step8

preorder_step9

preorder_step10

preorder_step11

Figure 7-11   The recursive process of preorder traversal

2.   Complexity analysis

  • Time complexity is \(O(n)\): All nodes are visited once, using \(O(n)\) time.
  • Space complexity is \(O(n)\): In the worst case, i.e., the tree degrades into a linked list, the recursion depth reaches \(n\), the system occupies \(O(n)\) stack frame space.
Feel free to drop your insights, questions or suggestions