""" File: heap.py Created Time: 2023-02-23 Author: krahets (krahets@163.com) """ import sys from pathlib import Path sys.path.append(str(Path(__file__).parent.parent)) from modules import print_heap import heapq def test_push(heap: list, val: int, flag: int = 1): heapq.heappush(heap, flag * val) # 元素入堆積 print(f"\n元素 {val} 入堆積後") print_heap([flag * val for val in heap]) def test_pop(heap: list, flag: int = 1): val = flag * heapq.heappop(heap) # 堆積頂元素出堆積 print(f"\n堆積頂元素 {val} 出堆積後") print_heap([flag * val for val in heap]) """Driver Code""" if __name__ == "__main__": # 初始化小頂堆積 min_heap, flag = [], 1 # 初始化大頂堆積 max_heap, flag = [], -1 print("\n以下測試樣例為大頂堆積") # Python 的 heapq 模組預設實現小頂堆積 # 考慮將“元素取負”後再入堆積,這樣就可以將大小關係顛倒,從而實現大頂堆積 # 在本示例中,flag = 1 時對應小頂堆積,flag = -1 時對應大頂堆積 # 元素入堆積 test_push(max_heap, 1, flag) test_push(max_heap, 3, flag) test_push(max_heap, 2, flag) test_push(max_heap, 5, flag) test_push(max_heap, 4, flag) # 獲取堆積頂元素 peek: int = flag * max_heap[0] print(f"\n堆積頂元素為 {peek}") # 堆積頂元素出堆積 test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) # 獲取堆積大小 size: int = len(max_heap) print(f"\n堆積元素數量為 {size}") # 判斷堆積是否為空 is_empty: bool = not max_heap print(f"\n堆積是否為空 {is_empty}") # 輸入串列並建堆積 # 時間複雜度為 O(n) ,而非 O(nlogn) min_heap = [1, 3, 2, 5, 4] heapq.heapify(min_heap) print("\n輸入串列並建立小頂堆積後") print_heap(min_heap)