跳转至

8.1. 堆

「堆 Heap」是一棵限定条件下的「完全二叉树」。根据成立条件,堆主要分为两种类型:

  • 「大顶堆 Max Heap」,任意结点的值 \(\geq\) 其子结点的值;
  • 「小顶堆 Min Heap」,任意结点的值 \(\leq\) 其子结点的值;

min_heap_and_max_heap

8.1.1. 堆术语与性质

  • 由于堆是完全二叉树,因此最底层结点靠左填充,其它层结点皆被填满。
  • 二叉树中的根结点对应「堆顶」,底层最靠右结点对应「堆底」。
  • 对于大顶堆 / 小顶堆,其堆顶元素(即根结点)的值最大 / 最小。

8.1.2. 堆常用操作

值得说明的是,多数编程语言提供的是「优先队列 Priority Queue」,其是一种抽象数据结构,定义为具有出队优先级的队列

而恰好,堆的定义与优先队列的操作逻辑完全吻合,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构。因此,本文与代码对两者不做特别区分,统一使用「堆」来命名。

堆的常用操作见下表(方法命名以 Java 为例)。

Table. 堆的常用操作

方法 描述 时间复杂度
add() 元素入堆 \(O(\log n)\)
poll() 堆顶元素出堆 \(O(\log n)\)
peek() 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) \(O(1)\)
size() 获取堆的元素数量 \(O(1)\)
isEmpty() 判断堆是否为空 \(O(1)\)

我们可以直接使用编程语言提供的堆类(或优先队列类)。

Tip

类似于排序中“从小到大排列”和“从大到小排列”,“大顶堆”和“小顶堆”可仅通过修改 Comparator 来互相转换。

heap.java
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> { return b - a; });

/* 元素入堆 */
maxHeap.add(1);
maxHeap.add(3);
maxHeap.add(2);
maxHeap.add(5);
maxHeap.add(4);

/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = heap.poll();  // 5
peek = heap.poll();  // 4
peek = heap.poll();  // 3
peek = heap.poll();  // 2
peek = heap.poll();  // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();

/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
heap.cpp
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;

/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);

/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();

/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
heap.py

heap.go
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
// 实现 heap.Interface 需要同时实现 sort.Interface
type intHeap []any

// Push heap.Interface 的方法,实现推入元素到堆
func (h *intHeap) Push(x any) {
    // Push 和 Pop 使用 pointer receiver 作为参数
    // 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
    *h = append(*h, x.(int))
}

// Pop heap.Interface 的方法,实现弹出堆顶元素
func (h *intHeap) Pop() any {
    // 待出堆元素存放在最后
    last := (*h)[len(*h)-1]
    *h = (*h)[:len(*h)-1]
    return last
}

// Len sort.Interface 的方法
func (h *intHeap) Len() int {
    return len(*h)
}

// Less sort.Interface 的方法
func (h *intHeap) Less(i, j int) bool {
    // 如果实现小顶堆,则需要调整为小于号
    return (*h)[i].(int) > (*h)[j].(int)
}

// Swap sort.Interface 的方法
func (h *intHeap) Swap(i, j int) {
    (*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}

// Top 获取堆顶元素
func (h *intHeap) Top() any {
    return (*h)[0]
}

/* Driver Code */
func TestHeap(t *testing.T) {
    /* 初始化堆 */
    // 初始化大顶堆
    maxHeap := &intHeap{}
    heap.Init(maxHeap)
    /* 元素入堆 */
    // 调用 heap.Interface 的方法,来添加元素
    heap.Push(maxHeap, 1)
    heap.Push(maxHeap, 3)
    heap.Push(maxHeap, 2)
    heap.Push(maxHeap, 4)
    heap.Push(maxHeap, 5)

    /* 获取堆顶元素 */
    top := maxHeap.Top()
    fmt.Printf("堆顶元素为 %d\n", top)

    /* 堆顶元素出堆 */
    // 调用 heap.Interface 的方法,来移除元素
    heap.Pop(maxHeap)
    heap.Pop(maxHeap)
    heap.Pop(maxHeap)
    heap.Pop(maxHeap)
    heap.Pop(maxHeap)

    /* 获取堆大小 */
    size := len(*maxHeap)
    fmt.Printf("堆元素数量为 %d\n", size)

    /* 判断堆是否为空 */
    isEmpty := len(*maxHeap) == 0
    fmt.Printf("堆是否为空 %t\n", isEmpty)
}
heap.js
// JavaScript 未提供内置 heap 类
heap.ts
// TypeScript 未提供内置堆 Heap 类
heap.c

heap.cs

heap.swift
// Swift 未提供内置 heap 类
heap.zig

8.1.3. 堆的实现

下文实现的是「大顶堆」,若想转换为「小顶堆」,将所有大小逻辑判断取逆(例如将 \(\geq\) 替换为 \(\leq\) )即可,有兴趣的同学可自行实现。

堆的存储与表示

在二叉树章节我们学过,「完全二叉树」非常适合使用「数组」来表示,而堆恰好是一棵完全二叉树,因而我们采用「数组」来存储「堆」

二叉树指针。使用数组表示二叉树时,元素代表结点值,索引代表结点在二叉树中的位置,而结点指针通过索引映射公式来实现

具体地,给定索引 \(i\) ,那么其左子结点索引为 \(2i + 1\) 、右子结点索引为 \(2i + 2\) 、父结点索引为 \((i - 1) / 2\) (向下整除)。当索引越界时,代表空结点或结点不存在。

representation_of_heap

我们将索引映射公式封装成函数,以便后续使用。

my_heap.java
/* 获取左子结点索引 */
int left(int i) {
    return 2 * i + 1;
}

/* 获取右子结点索引 */
int right(int i) {
    return 2 * i + 2;
}

/* 获取父结点索引 */
int parent(int i) {
    return (i - 1) / 2; // 向下整除
}
my_heap.cpp
/* 获取左子结点索引 */
int left(int i) {
    return 2 * i + 1;
}

/* 获取右子结点索引 */
int right(int i) {
    return 2 * i + 2;
} 

/* 获取父结点索引 */
int parent(int i) {
    return (i - 1) / 2; // 向下取整
}
my_heap.py

my_heap.go
/* 获取左子结点索引 */
func (h *maxHeap) left(i int) int {
    return 2*i + 1
}

/* 获取右子结点索引 */
func (h *maxHeap) right(i int) int {
    return 2*i + 2
}

/* 获取父结点索引 */
func (h *maxHeap) parent(i int) int {
    // 向下整除
    return (i - 1) / 2
}
my_heap.js
/* 获取左子结点索引 */
#left(i) {
    return 2 * i + 1;
}

/* 获取右子结点索引 */
#right(i) {
    return 2 * i + 2;
}

/* 获取父结点索引 */
#parent(i) {
    return Math.floor((i - 1) / 2); // 向下整除
}
my_heap.ts
/* 获取左子结点索引 */
left(i: number): number {
    return 2 * i + 1;
}

/* 获取右子结点索引 */
right(i: number): number {
    return 2 * i + 2;
}

/* 获取父结点索引 */
parent(i: number): number {
    return Math.floor((i - 1) / 2); // 向下整除
}
my_heap.c
[class]{maxHeap}-[func]{left}

[class]{maxHeap}-[func]{right}

[class]{maxHeap}-[func]{parent}
my_heap.cs
[class]{MaxHeap}-[func]{left}

[class]{MaxHeap}-[func]{right}

[class]{MaxHeap}-[func]{parent}
my_heap.swift
/* 获取左子结点索引 */
func left(i: Int) -> Int {
    2 * i + 1
}

/* 获取右子结点索引 */
func right(i: Int) -> Int {
    2 * i + 2
}

/* 获取父结点索引 */
func parent(i: Int) -> Int {
    (i - 1) / 2 // 向下整除
}
my_heap.zig
// 获取左子结点索引
fn left(i: usize) usize {
    return 2 * i + 1;
}

// 获取右子结点索引
fn right(i: usize) usize {
    return 2 * i + 2;
}

// 获取父结点索引
fn parent(i: usize) usize {
    // return (i - 1) / 2; // 向下整除
    return @divFloor(i - 1, 2);
}

访问堆顶元素

堆顶元素是二叉树的根结点,即列表首元素。

my_heap.java
/* 访问堆顶元素 */
int peek() {
    return maxHeap.get(0);
}
my_heap.cpp
/* 访问堆顶元素 */
int peek() {
    return maxHeap[0];
}
my_heap.py

my_heap.go
/* 访问堆顶元素 */
func (h *maxHeap) peek() any {
    return h.data[0]
}
my_heap.js
/* 访问堆顶元素 */
peek() {
    return this.#maxHeap[0];
}
my_heap.ts
/* 访问堆顶元素 */
peek(): number {
    return this.maxHeap[0];
}
my_heap.c
[class]{maxHeap}-[func]{peek}
my_heap.cs
[class]{MaxHeap}-[func]{peek}
my_heap.swift
/* 访问堆顶元素 */
func peek() -> Int {
    maxHeap[0]
}
my_heap.zig
// 访问堆顶元素
fn peek(self: *Self) T {
    return self.maxHeap.?.items[0];
}  

元素入堆

给定元素 val ,我们先将其添加到堆底。添加后,由于 val 可能大于堆中其它元素,此时堆的成立条件可能已经被破坏,因此需要修复从插入结点到根结点这条路径上的各个结点,该操作被称为「堆化 Heapify」。

考虑从入堆结点开始,从底至顶执行堆化。具体地,比较插入结点与其父结点的值,若插入结点更大则将它们交换;并循环以上操作,从底至顶地修复堆中的各个结点;直至越过根结点时结束,或当遇到无需交换的结点时提前结束。

heap_push_step1

heap_push_step2

heap_push_step3

heap_push_step4

heap_push_step5

heap_push_step6

设结点总数为 \(n\) ,则树的高度为 \(O(\log n)\) ,易得堆化操作的循环轮数最多为 \(O(\log n)\)因而元素入堆操作的时间复杂度为 \(O(\log n)\)

my_heap.java
/* 元素入堆 */
void push(int val) {
    // 添加结点
    maxHeap.add(val);
    // 从底至顶堆化
    siftUp(size() - 1);
}

/* 从结点 i 开始,从底至顶堆化 */
void siftUp(int i) {
    while (true) {
        // 获取结点 i 的父结点
        int p = parent(i);
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
            break;
        // 交换两结点
        swap(i, p);
        // 循环向上堆化
        i = p;
    }
}
my_heap.cpp
/* 元素入堆 */
void push(int val) {
    // 添加结点
    maxHeap.push_back(val);
    // 从底至顶堆化
    siftUp(size() - 1);
}

/* 从结点 i 开始,从底至顶堆化 */
void siftUp(int i) {
    while (true) {
        // 获取结点 i 的父结点
        int p =  parent(i);
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if (p < 0 || maxHeap[i] <= maxHeap[p])
            break;
        // 交换两结点
        swap(maxHeap[i], maxHeap[p]);
        // 循环向上堆化
        i = p;
    }
}
my_heap.py

my_heap.go
/* 元素入堆 */
func (h *maxHeap) push(val any) {
    // 添加结点
    h.data = append(h.data, val)
    // 从底至顶堆化
    h.siftUp(len(h.data) - 1)
}

/* 从结点 i 开始,从底至顶堆化 */
func (h *maxHeap) siftUp(i int) {
    for true {
        // 获取结点 i 的父结点
        p := h.parent(i)
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if p < 0 || h.data[i].(int) <= h.data[p].(int) {
            break
        }
        // 交换两结点
        h.swap(i, p)
        // 循环向上堆化
        i = p
    }
}
my_heap.js
/* 元素入堆 */
push(val) {
    // 添加结点
    this.#maxHeap.push(val);
    // 从底至顶堆化
    this.#siftUp(this.size() - 1);
}

/* 从结点 i 开始,从底至顶堆化 */
#siftUp(i) {
    while (true) {
        // 获取结点 i 的父结点
        const p = this.#parent(i);
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;
        // 交换两结点
        this.#swap(i, p);
        // 循环向上堆化
        i = p;
    }
}
my_heap.ts
/* 元素入堆 */
push(val: number): void {
    // 添加结点
    this.maxHeap.push(val);
    // 从底至顶堆化
    this.siftUp(this.size() - 1);
}

/* 从结点 i 开始,从底至顶堆化 */
siftUp(i: number): void {
    while (true) {
        // 获取结点 i 的父结点
        const p = this.parent(i);
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break;
        // 交换两结点
        this.swap(i, p);
        // 循环向上堆化
        i = p;
    }
}
my_heap.c
[class]{maxHeap}-[func]{push}

[class]{maxHeap}-[func]{siftUp}
my_heap.cs
[class]{MaxHeap}-[func]{push}

[class]{MaxHeap}-[func]{siftUp}
my_heap.swift
/* 元素入堆 */
func push(val: Int) {
    // 添加结点
    maxHeap.append(val)
    // 从底至顶堆化
    siftUp(i: size() - 1)
}

/* 从结点 i 开始,从底至顶堆化 */
func siftUp(i: Int) {
    var i = i
    while true {
        // 获取结点 i 的父结点
        let p = parent(i: i)
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if p < 0 || maxHeap[i] <= maxHeap[p] {
            break
        }
        // 交换两结点
        swap(i: i, j: p)
        // 循环向上堆化
        i = p
    }
}
my_heap.zig
// 元素入堆
fn push(self: *Self, val: T) !void {
    // 添加结点
    try self.maxHeap.?.append(val);
    // 从底至顶堆化
    try self.siftUp(self.size() - 1);
}  

// 从结点 i 开始,从底至顶堆化
fn siftUp(self: *Self, i_: usize) !void {
    var i = i_;
    while (true) {
        // 获取结点 i 的父结点
        var p = parent(i);
        // 当“越过根结点”或“结点无需修复”时,结束堆化
        if (p < 0 or self.maxHeap.?.items[i] <= self.maxHeap.?.items[p]) break;
        // 交换两结点
        try self.swap(i, p);
        // 循环向上堆化
        i = p;
    }
}

堆顶元素出堆

堆顶元素是二叉树根结点,即列表首元素,如果我们直接将首元素从列表中删除,则二叉树中所有结点都会随之发生移位(索引发生变化),这样后续使用堆化修复就很麻烦了。为了尽量减少元素索引变动,采取以下操作步骤:

  1. 交换堆顶元素与堆底元素(即交换根结点与最右叶结点);
  2. 交换完成后,将堆底从列表中删除(注意,因为已经交换,实际上删除的是原来的堆顶元素);
  3. 从根结点开始,从顶至底执行堆化

顾名思义,从顶至底堆化的操作方向与从底至顶堆化相反,我们比较根结点的值与其两个子结点的值,将最大的子结点与根结点执行交换,并循环以上操作,直到越过叶结点时结束,或当遇到无需交换的结点时提前结束。

heap_poll_step1

heap_poll_step2

heap_poll_step3

heap_poll_step4

heap_poll_step5

heap_poll_step6

heap_poll_step7

heap_poll_step8

heap_poll_step9

heap_poll_step10

与元素入堆操作类似,堆顶元素出堆操作的时间复杂度为 \(O(\log n)\)

my_heap.java
/* 元素出堆 */
int poll() {
    // 判空处理
    if (isEmpty())
        throw new EmptyStackException();
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    swap(0, size() - 1);
    // 删除结点
    int val = maxHeap.remove(size() - 1);
    // 从顶至底堆化
    siftDown(0);
    // 返回堆顶元素
    return val;
}

/* 从结点 i 开始,从顶至底堆化 */
void siftDown(int i) {
    while (true) {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        int l = left(i), r = right(i), ma = i;
        if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
            ma = l;
        if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
            ma = r;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) break;
        // 交换两结点
        swap(i, ma);
        // 循环向下堆化
        i = ma;
    }
}
my_heap.cpp
/* 元素出堆 */
void poll() {
    // 判空处理
    if (empty()) {
        throw out_of_range("堆为空");
    }
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    swap(maxHeap[0], maxHeap[size() - 1]);
    // 删除结点
    maxHeap.pop_back();
    // 从顶至底堆化
    siftDown(0);
}

/* 从结点 i 开始,从顶至底堆化 */
void siftDown(int i) {
    while (true) {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        int l = left(i), r = right(i), ma = i;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (l < size() && maxHeap[l] > maxHeap[ma]) 
            ma = l;
        if (r < size() && maxHeap[r] > maxHeap[ma])
            ma = r;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) 
            break;
        swap(maxHeap[i], maxHeap[ma]);
        // 循环向下堆化
        i = ma;
    }
}
my_heap.py

my_heap.go
/* 元素出堆 */
func (h *maxHeap) poll() any {
    // 判空处理
    if h.isEmpty() {
        fmt.Println("error")
        return nil
    }
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    h.swap(0, h.size()-1)
    // 删除结点
    val := h.data[len(h.data)-1]
    h.data = h.data[:len(h.data)-1]
    // 从顶至底堆化
    h.siftDown(0)

    // 返回堆顶元素
    return val
}

/* 从结点 i 开始,从顶至底堆化 */
func (h *maxHeap) siftDown(i int) {
    for true {
        // 判断结点 i, l, r 中值最大的结点,记为 max
        l, r, max := h.left(i), h.right(i), i
        if l < h.size() && h.data[l].(int) > h.data[max].(int) {
            max = l
        }
        if r < h.size() && h.data[r].(int) > h.data[max].(int) {
            max = r
        }
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if max == i {
            break
        }
        // 交换两结点
        h.swap(i, max)
        // 循环向下堆化
        i = max
    }
}
my_heap.js
/* 元素出堆 */
poll() {
    // 判空处理
    if (this.isEmpty()) throw new Error("堆为空");
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    this.#swap(0, this.size() - 1);
    // 删除结点
    const val = this.#maxHeap.pop();
    // 从顶至底堆化
    this.#siftDown(0);
    // 返回堆顶元素
    return val;
}

/* 从结点 i 开始,从顶至底堆化 */
#siftDown(i) {
    while (true) {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        const l = this.#left(i),
            r = this.#right(i);
        let ma = i;
        if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;
        if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) break;
        // 交换两结点
        this.#swap(i, ma);
        // 循环向下堆化
        i = ma;
    }
}
my_heap.ts
/* 元素出堆 */
poll(): number {
    // 判空处理
    if (this.isEmpty()) throw new RangeError("Heap is empty.");
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    this.swap(0, this.size() - 1);
    // 删除结点
    const val = this.maxHeap.pop();
    // 从顶至底堆化
    this.siftDown(0);
    // 返回堆顶元素
    return val;
}

/* 从结点 i 开始,从顶至底堆化 */
siftDown(i: number): void {
    while (true) {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        const l = this.left(i), r = this.right(i);
        let ma = i;
        if (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l;
        if (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) break;
        // 交换两结点
        this.swap(i, ma);
        // 循环向下堆化
        i = ma;
    }
}
my_heap.c
[class]{maxHeap}-[func]{poll}

[class]{maxHeap}-[func]{siftDown}
my_heap.cs
[class]{MaxHeap}-[func]{poll}

[class]{MaxHeap}-[func]{siftDown}
my_heap.swift
/* 元素出堆 */
func poll() -> Int {
    // 判空处理
    if isEmpty() {
        fatalError("堆为空")
    }
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    swap(i: 0, j: size() - 1)
    // 删除结点
    let val = maxHeap.remove(at: size() - 1)
    // 从顶至底堆化
    siftDown(i: 0)
    // 返回堆顶元素
    return val
}

/* 从结点 i 开始,从顶至底堆化 */
func siftDown(i: Int) {
    var i = i
    while true {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        let l = left(i: i)
        let r = right(i: i)
        var ma = i
        if l < size(), maxHeap[l] > maxHeap[ma] {
            ma = l
        }
        if r < size(), maxHeap[r] > maxHeap[ma] {
            ma = r
        }
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if ma == i {
            break
        }
        // 交换两结点
        swap(i: i, j: ma)
        // 循环向下堆化
        i = ma
    }
}
my_heap.zig
// 元素出堆
fn poll(self: *Self) !T {
    // 判断处理
    if (self.isEmpty()) unreachable;
    // 交换根结点与最右叶结点(即交换首元素与尾元素)
    try self.swap(0, self.size() - 1);
    // 删除结点
    var val = self.maxHeap.?.pop();
    // 从顶至底堆化
    try self.siftDown(0);
    // 返回堆顶元素
    return val;
} 

// 从结点 i 开始,从顶至底堆化
fn siftDown(self: *Self, i_: usize) !void {
    var i = i_;
    while (true) {
        // 判断结点 i, l, r 中值最大的结点,记为 ma
        var l = left(i);
        var r = right(i);
        var ma = i;
        if (l < self.size() and self.maxHeap.?.items[l] > self.maxHeap.?.items[ma]) ma = l;
        if (r < self.size() and self.maxHeap.?.items[r] > self.maxHeap.?.items[ma]) ma = r;
        // 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) break;
        // 交换两结点
        try self.swap(i, ma);
        // 循环向下堆化
        i = ma;
    }
}

输入数据并建堆 *

如果我们想要直接输入一个列表并将其建堆,那么该怎么做呢?最直接地,考虑使用「元素入堆」方法,将列表元素依次入堆。元素入堆的时间复杂度为 \(O(\log n)\) ,而平均长度为 \(\frac{n}{2}\) ,因此该方法的总体时间复杂度为 \(O(n \log n)\)

然而,存在一种更加优雅的建堆方法。设结点数量为 \(n\) ,我们先将列表所有元素原封不动添加进堆,然后迭代地对各个结点执行「从顶至底堆化」。当然,无需对叶结点执行堆化,因为其没有子结点。

my_heap.java
/* 构造方法,根据输入列表建堆 */
MaxHeap(List<Integer> nums) {
    // 将列表元素原封不动添加进堆
    maxHeap = new ArrayList<>(nums);
    // 堆化除叶结点以外的其他所有结点
    for (int i = parent(size() - 1); i >= 0; i--) {
        siftDown(i);
    }
}
my_heap.cpp
/* 构造方法,根据输入列表建堆 */
MaxHeap(vector<int> nums) {
    // 将列表元素原封不动添加进堆
    maxHeap = nums;
    // 堆化除叶结点以外的其他所有结点
    for (int i = parent(size() - 1); i >= 0; i--) {
        siftDown(i);
    }
}
my_heap.py

my_heap.go
/* 构造方法,根据切片建堆 */
func newMaxHeap(nums []any) *maxHeap {
    // 将列表元素原封不动添加进堆
    h := &maxHeap{data: nums}
    for i := len(h.data) - 1; i >= 0; i-- {
        // 堆化除叶结点以外的其他所有结点
        h.siftDown(i)
    }
    return h
}
my_heap.js
/* 构造方法,建立空堆或根据输入列表建堆 */
constructor(nums) {
    // 将列表元素原封不动添加进堆
    this.#maxHeap = nums === undefined ? [] : [...nums];
    // 堆化除叶结点以外的其他所有结点
    for (let i = this.#parent(this.size() - 1); i >= 0; i--) {
        this.#siftDown(i);
    }
}
my_heap.ts
/* 构造方法,建立空堆或根据输入列表建堆 */
constructor(nums?: number[]) {
    // 将列表元素原封不动添加进堆
    this.maxHeap = nums === undefined ? [] : [...nums];
    // 堆化除叶结点以外的其他所有结点
    for (let i = this.parent(this.size() - 1); i >= 0; i--) {
        this.siftDown(i);
    }
}
my_heap.c
[class]{maxHeap}-[func]{newMaxHeap}
my_heap.cs
[class]{MaxHeap}-[func]{MaxHeap}
my_heap.swift
/* 构造方法,根据输入列表建堆 */
init(nums: [Int]) {
    // 将列表元素原封不动添加进堆
    maxHeap = nums
    // 堆化除叶结点以外的其他所有结点
    for i in stride(from: parent(i: size() - 1), through: 0, by: -1) {
        siftDown(i: i)
    }
}
my_heap.zig
// 构造方法,根据输入列表建堆
fn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {
    if (self.maxHeap != null) return;
    self.maxHeap = std.ArrayList(T).init(allocator);
    // 将列表元素原封不动添加进堆
    try self.maxHeap.?.appendSlice(nums);
    // 堆化除叶结点以外的其他所有结点
    var i: usize = parent(self.size() - 1) + 1;
    while (i > 0) : (i -= 1) {
        try self.siftDown(i - 1);
    }
}

那么,第二种建堆方法的时间复杂度时多少呢?我们来做一下简单推算。

  • 完全二叉树中,设结点总数为 \(n\) ,则叶结点数量为 \((n + 1) / 2\) ,其中 \(/\) 为向下整除。因此在排除叶结点后,需要堆化结点数量为 \((n - 1)/2\) ,即为 \(O(n)\)
  • 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 \(O(\log n)\)

将上述两者相乘,可得时间复杂度为 \(O(n \log n)\) 。然而,该估算结果仍不够准确,因为我们没有考虑到 二叉树底层结点远多于顶层结点 的性质。

下面我们来尝试展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 \(n\) ,树高度为 \(h\) 。上文提到,结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”。因此,我们将各层的“结点数量 \(\times\) 结点高度”求和,即可得到所有结点的堆化的迭代次数总和。

\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1 \]

heapify_count

化简上式需要借助中学的数列知识,先对 \(T(h)\) 乘以 \(2\) ,易得

\[ \begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline \end{aligned} \]

使用错位相减法,令下式 \(2 T(h)\) 减去上式 \(T(h)\) ,可得

\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h \]

观察上式,\(T(h)\) 是一个等比数列,可直接使用求和公式,得到时间复杂度为

\[ \begin{aligned} T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline & = 2^{h+1} - h \newline & = O(2^h) \end{aligned} \]

进一步地,高度为 \(h\) 的完美二叉树的结点数量为 \(n = 2^{h+1} - 1\) ,易得复杂度为 \(O(2^h) = O(n)\)。以上推算表明,输入列表并建堆的时间复杂度为 \(O(n)\) ,非常高效

8.1.4. 堆常见应用

  • 优先队列。堆常作为实现优先队列的首选数据结构,入队和出队操作时间复杂度为 \(O(\log n)\) ,建队操作为 \(O(n)\) ,皆非常高效。
  • 堆排序。给定一组数据,我们使用其建堆,并依次全部弹出,则可以得到有序的序列。当然,堆排序一般无需弹出元素,仅需每轮将堆顶元素交换至数组尾部并减小堆的长度即可。
  • 获取最大的 \(k\) 个元素。这既是一道经典算法题目,也是一种常见应用,例如选取热度前 10 的新闻作为微博热搜,选取前 10 销量的商品等。

评论