---
comments: true
---
# 11.3. 插入排序
「插入排序 Insertion Sort」是一种基于 **数组插入操作** 的排序算法。
「插入操作」原理:选定某个待排序元素为基准数 `base`,将 `base` 与其左侧已排序区间元素依次对比大小,并插入到正确位置。
回忆数组插入操作,我们需要将从目标索引到 `base` 之间的所有元素向右移动一位,然后再将 `base` 赋值给目标索引。
![单次插入操作](insertion_sort.assets/insertion_operation.png)
Fig. 单次插入操作
## 11.3.1. 算法流程
循环执行插入操作:
1. 先选取数组的 **第 2 个元素** 为 `base` ,执行插入操作后,**数组前 2 个元素已完成排序**。
2. 选取 **第 3 个元素** 为 `base` ,执行插入操作后,**数组前 3 个元素已完成排序**。
3. 以此类推……最后一轮选取 **数组尾元素** 为 `base` ,执行插入操作后,**所有元素已完成排序**。
![插入排序流程](insertion_sort.assets/insertion_sort_overview.png)
Fig. 插入排序流程
=== "Java"
```java title="insertion_sort.java"
/* 插入排序 */
void insertionSort(int[] nums) {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for (int i = 1; i < nums.length; i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 2. 将 base 赋值到正确位置
}
}
```
=== "C++"
```cpp title="insertion_sort.cpp"
/* 插入排序 */
void insertionSort(vector& nums) {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for (int i = 1; i < nums.size(); i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 2. 将 base 赋值到正确位置
}
}
```
=== "Python"
```python title="insertion_sort.py"
def insertion_sort(nums: list[int]) -> None:
""" 插入排序 """
# 外循环:base = nums[1], nums[2], ..., nums[n-1]
for i in range(1, len(nums)):
base: int = nums[i]
j: int = i - 1
# 内循环:将 base 插入到左边的正确位置
while j >= 0 and nums[j] > base:
nums[j + 1] = nums[j] # 1. 将 nums[j] 向右移动一位
j -= 1
nums[j + 1] = base # 2. 将 base 赋值到正确位置
```
=== "Go"
```go title="insertion_sort.go"
/* 插入排序 */
func insertionSort(nums []int) {
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i := 1; i < len(nums); i++ {
base := nums[i]
j := i - 1
// 内循环:将 base 插入到左边的正确位置
for j >= 0 && nums[j] > base {
nums[j+1] = nums[j] // 1. 将 nums[j] 向右移动一位
j--
}
nums[j+1] = base // 2. 将 base 赋值到正确位置
}
}
```
=== "JavaScript"
```javascript title="insertion_sort.js"
/* 插入排序 */
function insertionSort(nums) {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for (let i = 1; i < nums.length; i++) {
let base = nums[i], j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 2. 将 base 赋值到正确位置
}
}
```
=== "TypeScript"
```typescript title="insertion_sort.ts"
/* 插入排序 */
function insertionSort(nums: number[]): void {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for (let i = 1; i < nums.length; i++) {
const base = nums[i];
let j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 2. 将 base 赋值到正确位置
}
}
```
=== "C"
```c title="insertion_sort.c"
[class]{}-[func]{insertionSort}
```
=== "C#"
```csharp title="insertion_sort.cs"
/* 插入排序 */
void insertionSort(int[] nums)
{
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for (int i = 1; i < nums.Length; i++)
{
int bas = nums[i], j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > bas)
{
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = bas; // 2. 将 base 赋值到正确位置
}
}
```
=== "Swift"
```swift title="insertion_sort.swift"
/* 插入排序 */
func insertionSort(nums: inout [Int]) {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
for i in stride(from: 1, to: nums.count, by: 1) {
let base = nums[i]
var j = i - 1
// 内循环:将 base 插入到左边的正确位置
while j >= 0, nums[j] > base {
nums[j + 1] = nums[j] // 1. 将 nums[j] 向右移动一位
j -= 1
}
nums[j + 1] = base // 2. 将 base 赋值到正确位置
}
}
```
=== "Zig"
```zig title="insertion_sort.zig"
// 插入排序
fn insertionSort(nums: []i32) void {
// 外循环:base = nums[1], nums[2], ..., nums[n-1]
var i: usize = 1;
while (i < nums.len) : (i += 1) {
var base = nums[i];
var j: usize = i;
// 内循环:将 base 插入到左边的正确位置
while (j >= 1 and nums[j - 1] > base) : (j -= 1) {
nums[j] = nums[j - 1]; // 1. 将 nums[j] 向右移动一位
}
nums[j] = base; // 2. 将 base 赋值到正确位置
}
}
```
## 11.3.2. 算法特性
**时间复杂度 $O(n^2)$** :最差情况下,各轮插入操作循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。输入数组完全有序下,达到最佳时间复杂度 $O(n)$ ,因此是“自适应排序”。
**空间复杂度 $O(1)$** :指针 $i$ , $j$ 使用常数大小的额外空间,因此是“原地排序”。
在插入操作中,我们会将元素插入到相等元素的右边,不会改变它们的次序,因此是“稳定排序”。
## 11.3.3. 插入排序优势
回顾「冒泡排序」和「插入排序」的复杂度分析,两者的循环轮数都是 $\frac{(n - 1) n}{2}$ 。但不同的是:
- 冒泡操作基于 **元素交换** 实现,需要借助一个临时变量实现,共 3 个单元操作;
- 插入操作基于 **元素赋值** 实现,只需 1 个单元操作;
粗略估计,冒泡排序的计算开销约为插入排序的 3 倍,因此插入排序更受欢迎,许多编程语言(例如 Java)的内置排序函数都使用到了插入排序,大致思路为:
- 对于 **长数组**,采用基于分治的排序算法,例如「快速排序」,时间复杂度为 $O(n \log n)$ ;
- 对于 **短数组**,直接使用「插入排序」,时间复杂度为 $O(n^2)$ ;
虽然插入排序比快速排序的时间复杂度更高,**但实际上在数据量较小时插入排序更快**,这是因为复杂度中的常数项(即每轮中的单元操作数量)占主导作用。这个现象与「线性查找」和「二分查找」的情况类似。