跳转至

11.7.   堆排序

Tip

阅读本节前,请确保已学完「堆」章节。

「堆排序 Heap Sort」是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序:

  1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
  2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。

以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。

11.7.1.   算法流程

设数组的长度为 \(n\) ,堆排序的流程如下:

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 \(1\) ,已排序元素数量加 \(1\)
  3. 从堆顶元素开始,从顶到底执行堆化操作(Sift Down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2.3. 步。循环 \(n - 1\) 轮后,即可完成数组排序。

实际上,元素出堆操作中也包含第 2.3. 步,只是多了一个弹出元素的步骤。

堆排序步骤

heap_sort_step2

heap_sort_step3

heap_sort_step4

heap_sort_step5

heap_sort_step6

heap_sort_step7

heap_sort_step8

heap_sort_step9

heap_sort_step10

heap_sort_step11

heap_sort_step12

在代码实现中,我们使用了与堆章节相同的从顶至底堆化(Sift Down)的函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 Sift Down 函数添加一个长度参数 \(n\) ,用于指定堆的当前有效长度。

heap_sort.java
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(int[] nums, int n, int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = 2 * i + 1;
        int r = 2 * i + 2;
        int ma = i;
        if (l < n && nums[l] > nums[ma])
            ma = l;
        if (r < n && nums[r] > nums[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i)
            break;
        // 交换两节点
        int temp = nums[i];
        nums[i] = nums[ma];
        nums[ma] = temp;
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
void heapSort(int[] nums) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (int i = nums.length / 2 - 1; i >= 0; i--) {
        siftDown(nums, nums.length, i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (int i = nums.length - 1; i > 0; i--) {
        // 交换根节点与最右叶节点(即交换首元素与尾元素)
        int tmp = nums[0];
        nums[0] = nums[i];
        nums[i] = tmp;
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}
heap_sort.cpp
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = 2 * i + 1;
        int r = 2 * i + 2;
        int ma = i;
        if (l < n && nums[l] > nums[ma])
            ma = l;
        if (r < n && nums[r] > nums[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if (ma == i) {
            break;
        }
        // 交换两节点
        swap(nums[i], nums[ma]);
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
void heapSort(vector<int> &nums) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (int i = nums.size() / 2 - 1; i >= 0; --i) {
        siftDown(nums, nums.size(), i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (int i = nums.size() - 1; i > 0; --i) {
        // 交换根节点与最右叶节点(即交换首元素与尾元素)
        swap(nums[0], nums[i]);
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}
heap_sort.py
def sift_down(nums: list[int], n: int, i: int):
    """堆的长度为 n ,从节点 i 开始,从顶至底堆化"""
    while True:
        # 判断节点 i, l, r 中值最大的节点,记为 ma
        l = 2 * i + 1
        r = 2 * i + 2
        ma = i
        if l < n and nums[l] > nums[ma]:
            ma = l
        if r < n and nums[r] > nums[ma]:
            ma = r
        # 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if ma == i:
            break
        # 交换两节点
        nums[i], nums[ma] = nums[ma], nums[i]
        # 循环向下堆化
        i = ma

def heap_sort(nums: list[int]):
    """堆排序"""
    # 建堆操作:堆化除叶节点以外的其他所有节点
    for i in range(len(nums) // 2 - 1, -1, -1):
        sift_down(nums, len(nums), i)
    # 从堆中提取最大元素,循环 n-1 轮
    for i in range(len(nums) - 1, 0, -1):
        # 交换根节点与最右叶节点(即交换首元素与尾元素)
        nums[0], nums[i] = nums[i], nums[0]
        # 以根节点为起点,从顶至底进行堆化
        sift_down(nums, i, 0)
heap_sort.go
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
func siftDown(nums *[]int, n, i int) {
    for true {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        l := 2*i + 1
        r := 2*i + 2
        ma := i
        if l < n && (*nums)[l] > (*nums)[ma] {
            ma = l
        }
        if r < n && (*nums)[r] > (*nums)[ma] {
            ma = r
        }
        // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if ma == i {
            break
        }
        // 交换两节点
        (*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]
        // 循环向下堆化
        i = ma
    }
}

/* 堆排序 */
func heapSort(nums *[]int) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for i := len(*nums)/2 - 1; i >= 0; i-- {
        siftDown(nums, len(*nums), i)
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for i := len(*nums) - 1; i > 0; i-- {
        // 交换根节点与最右叶节点(即交换首元素与尾元素)
        (*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0)
    }
}
heap_sort.js
[class]{}-[func]{siftDown}

[class]{}-[func]{heapSort}
heap_sort.ts
[class]{}-[func]{siftDown}

[class]{}-[func]{heapSort}
heap_sort.c
[class]{}-[func]{siftDown}

[class]{}-[func]{heapSort}
heap_sort.cs
[class]{heap_sort}-[func]{siftDown}

[class]{heap_sort}-[func]{heapSort}
heap_sort.swift
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
func siftDown(nums: inout [Int], n: Int, i: Int) {
    var i = i
    while true {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        let l = 2 * i + 1
        let r = 2 * i + 2
        var ma = i
        if l < n, nums[l] > nums[ma] {
            ma = l
        }
        if r < n, nums[r] > nums[ma] {
            ma = r
        }
        // 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
        if ma == i {
            break
        }
        // 交换两节点
        nums.swapAt(i, ma)
        // 循环向下堆化
        i = ma
    }
}

/* 堆排序 */
func heapSort(nums: inout [Int]) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {
        siftDown(nums: &nums, n: nums.count, i: i)
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for i in stride(from: nums.count - 1, to: 0, by: -1) {
        // 交换根节点与最右叶节点(即交换首元素与尾元素)
        nums.swapAt(0, i)
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums: &nums, n: i, i: 0)
    }
}
heap_sort.zig
[class]{}-[func]{siftDown}

[class]{}-[func]{heapSort}

11.7.2.   算法特性

  • 时间复杂度 \(O(n \log n)\) 、非自适应排序 :建堆操作使用 \(O(n)\) 时间。从堆中提取最大元素的时间复杂度为 \(O(\log n)\) ,共循环 \(n - 1\) 轮。
  • 空间复杂度 \(O(1)\) 、原地排序 :几个指针变量使用 \(O(1)\) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。

评论