You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/ruby/chapter_dynamic_programming/min_path_sum.rb

94 lines
2.9 KiB

=begin
File: min_path_sum.rb
Created Time: 2024-05-29
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 最小路径和:暴力搜索 ###
def min_path_sum_dfs(grid, i, j)
# 若为左上角单元格,则终止搜索
return grid[i][j] if i == 0 && j == 0
# 若行列索引越界,则返回 +∞ 代价
return Float::INFINITY if i < 0 || j < 0
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
up = min_path_sum_dfs(grid, i - 1, j)
left = min_path_sum_dfs(grid, i, j - 1)
# 返回从左上角到 (i, j) 的最小路径代价
[left, up].min + grid[i][j]
end
### 最小路径和:记忆化搜索 ###
def min_path_sum_dfs_mem(grid, mem, i, j)
# 若为左上角单元格,则终止搜索
return grid[0][0] if i == 0 && j == 0
# 若行列索引越界,则返回 +∞ 代价
return Float::INFINITY if i < 0 || j < 0
# 若已有记录,则直接返回
return mem[i][j] if mem[i][j] != -1
# 左边和上边单元格的最小路径代价
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
# 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = [left, up].min + grid[i][j]
end
### 最小路径和:动态规划 ###
def min_path_sum_dp(grid)
n, m = grid.length, grid.first.length
# 初始化 dp 表
dp = Array.new(n) { Array.new(m, 0) }
dp[0][0] = grid[0][0]
# 状态转移:首行
(1...m).each { |j| dp[0][j] = dp[0][j - 1] + grid[0][j] }
# 状态转移:首列
(1...n).each { |i| dp[i][0] = dp[i - 1][0] + grid[i][0] }
# 状态转移:其余行和列
for i in 1...n
for j in 1...m
dp[i][j] = [dp[i][j - 1], dp[i - 1][j]].min + grid[i][j]
end
end
dp[n -1][m -1]
end
### 最小路径和:空间优化后的动态规划 ###
def min_path_sum_dp_comp(grid)
n, m = grid.length, grid.first.length
# 初始化 dp 表
dp = Array.new(m, 0)
# 状态转移:首行
dp[0] = grid[0][0]
(1...m).each { |j| dp[j] = dp[j - 1] + grid[0][j] }
# 状态转移:其余行
for i in 1...n
# 状态转移:首列
dp[0] = dp[0] + grid[i][0]
# 状态转移:其余列
(1...m).each { |j| dp[j] = [dp[j - 1], dp[j]].min + grid[i][j] }
end
dp[m - 1]
end
### Driver Code ###
if __FILE__ == $0
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
n, m = grid.length, grid.first.length
# 暴力搜索
res = min_path_sum_dfs(grid, n - 1, m - 1)
puts "从左上角到右下角的最小路径和为 #{res}"
# 记忆化搜索
mem = Array.new(n) { Array.new(m, - 1) }
res = min_path_sum_dfs_mem(grid, mem, n - 1, m -1)
puts "从左上角到右下角的最小路径和为 #{res}"
# 动态规划
res = min_path_sum_dp(grid)
puts "从左上角到右下角的最小路径和为 #{res}"
# 空间优化后的动态规划
res = min_path_sum_dp_comp(grid)
puts "从左上角到右下角的最小路径和为 #{res}"
end