You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.4 KiB
126 lines
4.4 KiB
/**
|
|
* File: min_path_sum.java
|
|
* Created Time: 2023-07-10
|
|
* Author: krahets (krahets@163.com)
|
|
*/
|
|
|
|
package chapter_dynamic_programming;
|
|
|
|
import java.util.Arrays;
|
|
|
|
public class min_path_sum {
|
|
/* Minimum path sum: Brute force search */
|
|
static int minPathSumDFS(int[][] grid, int i, int j) {
|
|
// If it's the top-left cell, terminate the search
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// If the row or column index is out of bounds, return a +∞ cost
|
|
if (i < 0 || j < 0) {
|
|
return Integer.MAX_VALUE;
|
|
}
|
|
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
|
|
int up = minPathSumDFS(grid, i - 1, j);
|
|
int left = minPathSumDFS(grid, i, j - 1);
|
|
// Return the minimum path cost from the top-left to (i, j)
|
|
return Math.min(left, up) + grid[i][j];
|
|
}
|
|
|
|
/* Minimum path sum: Memoized search */
|
|
static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|
// If it's the top-left cell, terminate the search
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// If the row or column index is out of bounds, return a +∞ cost
|
|
if (i < 0 || j < 0) {
|
|
return Integer.MAX_VALUE;
|
|
}
|
|
// If there is a record, return it
|
|
if (mem[i][j] != -1) {
|
|
return mem[i][j];
|
|
}
|
|
// The minimum path cost from the left and top cells
|
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
// Record and return the minimum path cost from the top-left to (i, j)
|
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|
return mem[i][j];
|
|
}
|
|
|
|
/* Minimum path sum: Dynamic programming */
|
|
static int minPathSumDP(int[][] grid) {
|
|
int n = grid.length, m = grid[0].length;
|
|
// Initialize dp table
|
|
int[][] dp = new int[n][m];
|
|
dp[0][0] = grid[0][0];
|
|
// State transition: first row
|
|
for (int j = 1; j < m; j++) {
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
}
|
|
// State transition: first column
|
|
for (int i = 1; i < n; i++) {
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
}
|
|
// State transition: the rest of the rows and columns
|
|
for (int i = 1; i < n; i++) {
|
|
for (int j = 1; j < m; j++) {
|
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[n - 1][m - 1];
|
|
}
|
|
|
|
/* Minimum path sum: Space-optimized dynamic programming */
|
|
static int minPathSumDPComp(int[][] grid) {
|
|
int n = grid.length, m = grid[0].length;
|
|
// Initialize dp table
|
|
int[] dp = new int[m];
|
|
// State transition: first row
|
|
dp[0] = grid[0][0];
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
}
|
|
// State transition: the rest of the rows
|
|
for (int i = 1; i < n; i++) {
|
|
// State transition: first column
|
|
dp[0] = dp[0] + grid[i][0];
|
|
// State transition: the rest of the columns
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[m - 1];
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
int[][] grid = {
|
|
{ 1, 3, 1, 5 },
|
|
{ 2, 2, 4, 2 },
|
|
{ 5, 3, 2, 1 },
|
|
{ 4, 3, 5, 2 }
|
|
};
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
// Brute force search
|
|
int res = minPathSumDFS(grid, n - 1, m - 1);
|
|
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
|
|
|
|
// Memoized search
|
|
int[][] mem = new int[n][m];
|
|
for (int[] row : mem) {
|
|
Arrays.fill(row, -1);
|
|
}
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
|
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
|
|
|
|
// Dynamic programming
|
|
res = minPathSumDP(grid);
|
|
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
|
|
|
|
// Space-optimized dynamic programming
|
|
res = minPathSumDPComp(grid);
|
|
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
|
|
}
|
|
}
|