You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
4.4 KiB
147 lines
4.4 KiB
"""
|
|
File: binary_search_tree.py
|
|
Created Time: 2022-12-20
|
|
Author: a16su (lpluls001@gmail.com)
|
|
"""
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent))
|
|
from modules import TreeNode, print_tree
|
|
|
|
|
|
class BinarySearchTree:
|
|
"""Binary search tree"""
|
|
|
|
def __init__(self):
|
|
"""Constructor"""
|
|
# Initialize empty tree
|
|
self._root = None
|
|
|
|
def get_root(self) -> TreeNode | None:
|
|
"""Get binary tree root node"""
|
|
return self._root
|
|
|
|
def search(self, num: int) -> TreeNode | None:
|
|
"""Search node"""
|
|
cur = self._root
|
|
# Loop find, break after passing leaf nodes
|
|
while cur is not None:
|
|
# Target node is in cur's right subtree
|
|
if cur.val < num:
|
|
cur = cur.right
|
|
# Target node is in cur's left subtree
|
|
elif cur.val > num:
|
|
cur = cur.left
|
|
# Found target node, break loop
|
|
else:
|
|
break
|
|
return cur
|
|
|
|
def insert(self, num: int):
|
|
"""Insert node"""
|
|
# If tree is empty, initialize root node
|
|
if self._root is None:
|
|
self._root = TreeNode(num)
|
|
return
|
|
# Loop find, break after passing leaf nodes
|
|
cur, pre = self._root, None
|
|
while cur is not None:
|
|
# Found duplicate node, thus return
|
|
if cur.val == num:
|
|
return
|
|
pre = cur
|
|
# Insertion position is in cur's right subtree
|
|
if cur.val < num:
|
|
cur = cur.right
|
|
# Insertion position is in cur's left subtree
|
|
else:
|
|
cur = cur.left
|
|
# Insert node
|
|
node = TreeNode(num)
|
|
if pre.val < num:
|
|
pre.right = node
|
|
else:
|
|
pre.left = node
|
|
|
|
def remove(self, num: int):
|
|
"""Remove node"""
|
|
# If tree is empty, return
|
|
if self._root is None:
|
|
return
|
|
# Loop find, break after passing leaf nodes
|
|
cur, pre = self._root, None
|
|
while cur is not None:
|
|
# Found node to be removed, break loop
|
|
if cur.val == num:
|
|
break
|
|
pre = cur
|
|
# Node to be removed is in cur's right subtree
|
|
if cur.val < num:
|
|
cur = cur.right
|
|
# Node to be removed is in cur's left subtree
|
|
else:
|
|
cur = cur.left
|
|
# If no node to be removed, return
|
|
if cur is None:
|
|
return
|
|
|
|
# Number of child nodes = 0 or 1
|
|
if cur.left is None or cur.right is None:
|
|
# When the number of child nodes = 0/1, child = null/that child node
|
|
child = cur.left or cur.right
|
|
# Remove node cur
|
|
if cur != self._root:
|
|
if pre.left == cur:
|
|
pre.left = child
|
|
else:
|
|
pre.right = child
|
|
else:
|
|
# If the removed node is the root, reassign the root
|
|
self._root = child
|
|
# Number of child nodes = 2
|
|
else:
|
|
# Get the next node in in-order traversal of cur
|
|
tmp: TreeNode = cur.right
|
|
while tmp.left is not None:
|
|
tmp = tmp.left
|
|
# Recursively remove node tmp
|
|
self.remove(tmp.val)
|
|
# Replace cur with tmp
|
|
cur.val = tmp.val
|
|
|
|
|
|
"""Driver Code"""
|
|
if __name__ == "__main__":
|
|
# Initialize binary search tree
|
|
bst = BinarySearchTree()
|
|
nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]
|
|
# Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
|
|
for num in nums:
|
|
bst.insert(num)
|
|
print("\nInitialized binary tree is\n")
|
|
print_tree(bst.get_root())
|
|
|
|
# Search node
|
|
node = bst.search(7)
|
|
print("\nFound node object is: {}, node value = {}".format(node, node.val))
|
|
|
|
# Insert node
|
|
bst.insert(16)
|
|
print("\nAfter inserting node 16, the binary tree is\n")
|
|
print_tree(bst.get_root())
|
|
|
|
# Remove node
|
|
bst.remove(1)
|
|
print("\nAfter removing node 1, the binary tree is\n")
|
|
print_tree(bst.get_root())
|
|
|
|
bst.remove(2)
|
|
print("\nAfter removing node 2, the binary tree is\n")
|
|
print_tree(bst.get_root())
|
|
|
|
bst.remove(4)
|
|
print("\nAfter removing node 4, the binary tree is\n")
|
|
print_tree(bst.get_root())
|