You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/codes/python/chapter_tree/binary_search_tree.py

147 lines
4.4 KiB

"""
File: binary_search_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree
class BinarySearchTree:
"""Binary search tree"""
def __init__(self):
"""Constructor"""
# Initialize empty tree
self._root = None
def get_root(self) -> TreeNode | None:
"""Get binary tree root node"""
return self._root
def search(self, num: int) -> TreeNode | None:
"""Search node"""
cur = self._root
# Loop find, break after passing leaf nodes
while cur is not None:
# Target node is in cur's right subtree
if cur.val < num:
cur = cur.right
# Target node is in cur's left subtree
elif cur.val > num:
cur = cur.left
# Found target node, break loop
else:
break
return cur
def insert(self, num: int):
"""Insert node"""
# If tree is empty, initialize root node
if self._root is None:
self._root = TreeNode(num)
return
# Loop find, break after passing leaf nodes
cur, pre = self._root, None
while cur is not None:
# Found duplicate node, thus return
if cur.val == num:
return
pre = cur
# Insertion position is in cur's right subtree
if cur.val < num:
cur = cur.right
# Insertion position is in cur's left subtree
else:
cur = cur.left
# Insert node
node = TreeNode(num)
if pre.val < num:
pre.right = node
else:
pre.left = node
def remove(self, num: int):
"""Remove node"""
# If tree is empty, return
if self._root is None:
return
# Loop find, break after passing leaf nodes
cur, pre = self._root, None
while cur is not None:
# Found node to be removed, break loop
if cur.val == num:
break
pre = cur
# Node to be removed is in cur's right subtree
if cur.val < num:
cur = cur.right
# Node to be removed is in cur's left subtree
else:
cur = cur.left
# If no node to be removed, return
if cur is None:
return
# Number of child nodes = 0 or 1
if cur.left is None or cur.right is None:
# When the number of child nodes = 0/1, child = null/that child node
child = cur.left or cur.right
# Remove node cur
if cur != self._root:
if pre.left == cur:
pre.left = child
else:
pre.right = child
else:
# If the removed node is the root, reassign the root
self._root = child
# Number of child nodes = 2
else:
# Get the next node in in-order traversal of cur
tmp: TreeNode = cur.right
while tmp.left is not None:
tmp = tmp.left
# Recursively remove node tmp
self.remove(tmp.val)
# Replace cur with tmp
cur.val = tmp.val
"""Driver Code"""
if __name__ == "__main__":
# Initialize binary search tree
bst = BinarySearchTree()
nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]
# Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
for num in nums:
bst.insert(num)
print("\nInitialized binary tree is\n")
print_tree(bst.get_root())
# Search node
node = bst.search(7)
print("\nFound node object is: {}, node value = {}".format(node, node.val))
# Insert node
bst.insert(16)
print("\nAfter inserting node 16, the binary tree is\n")
print_tree(bst.get_root())
# Remove node
bst.remove(1)
print("\nAfter removing node 1, the binary tree is\n")
print_tree(bst.get_root())
bst.remove(2)
print("\nAfter removing node 2, the binary tree is\n")
print_tree(bst.get_root())
bst.remove(4)
print("\nAfter removing node 4, the binary tree is\n")
print_tree(bst.get_root())