You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/dart/chapter_dynamic_programming/min_path_sum.dart

121 lines
3.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
* File: min_path_sum.dart
* Created Time: 2023-08-11
* Author: liuyuxin (gvenusleo@gmail.com)
*/
import 'dart:math';
/* 最小路徑和:暴力搜尋 */
int minPathSumDFS(List<List<int>> grid, int i, int j) {
// 若為左上角單元格,則終止搜尋
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,則返回 +∞ 代價
if (i < 0 || j < 0) {
// 在 Dart 中int 型別是固定範圍的整數,不存在表示“無窮大”的值
return BigInt.from(2).pow(31).toInt();
}
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// 返回從左上角到 (i, j) 的最小路徑代價
return min(left, up) + grid[i][j];
}
/* 最小路徑和:記憶化搜尋 */
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
// 若為左上角單元格,則終止搜尋
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,則返回 +∞ 代價
if (i < 0 || j < 0) {
// 在 Dart 中int 型別是固定範圍的整數,不存在表示“無窮大”的值
return BigInt.from(2).pow(31).toInt();
}
// 若已有記錄,則直接返回
if (mem[i][j] != -1) {
return mem[i][j];
}
// 左邊和上邊單元格的最小路徑代價
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// 記錄並返回左上角到 (i, j) 的最小路徑代價
mem[i][j] = min(left, up) + grid[i][j];
return mem[i][j];
}
/* 最小路徑和:動態規劃 */
int minPathSumDP(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// 初始化 dp 表
List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
dp[0][0] = grid[0][0];
// 狀態轉移:首行
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 狀態轉移:首列
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 狀態轉移:其餘行和列
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* 最小路徑和:空間最佳化後的動態規劃 */
int minPathSumDPComp(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// 初始化 dp 表
List<int> dp = List.filled(m, 0);
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// 狀態轉移:其餘行
for (int i = 1; i < n; i++) {
// 狀態轉移:首列
dp[0] = dp[0] + grid[i][0];
// 狀態轉移:其餘列
for (int j = 1; j < m; j++) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
/* Driver Code */
void main() {
List<List<int>> grid = [
[1, 3, 1, 5],
[2, 2, 4, 2],
[5, 3, 2, 1],
[4, 3, 5, 2],
];
int n = grid.length, m = grid[0].length;
// 暴力搜尋
int res = minPathSumDFS(grid, n - 1, m - 1);
print("從左上角到右下角的做小路徑和為 $res");
// 記憶化搜尋
List<List<int>> mem = List.generate(n, (i) => List.filled(m, -1));
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
print("從左上角到右下角的做小路徑和為 $res");
// 動態規劃
res = minPathSumDP(grid);
print("從左上角到右下角的做小路徑和為 $res");
// 空間最佳化後的動態規劃
res = minPathSumDPComp(grid);
print("從左上角到右下角的做小路徑和為 $res");
}