You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/go/chapter_computational_compl.../time_complexity.go

131 lines
2.3 KiB

// File: time_complexity.go
// Created Time: 2022-12-13
// Author: msk397 (machangxinq@gmail.com)
package chapter_computational_complexity
/* 常數階 */
func constant(n int) int {
count := 0
size := 100000
for i := 0; i < size; i++ {
count++
}
return count
}
/* 線性階 */
func linear(n int) int {
count := 0
for i := 0; i < n; i++ {
count++
}
return count
}
/* 線性階(走訪陣列) */
func arrayTraversal(nums []int) int {
count := 0
// 迴圈次數與陣列長度成正比
for range nums {
count++
}
return count
}
/* 平方階 */
func quadratic(n int) int {
count := 0
// 迴圈次數與資料大小 n 成平方關係
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
count++
}
}
return count
}
/* 平方階(泡沫排序) */
func bubbleSort(nums []int) int {
count := 0 // 計數器
// 外迴圈:未排序區間為 [0, i]
for i := len(nums) - 1; i > 0; i-- {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j := 0; j < i; j++ {
if nums[j] > nums[j+1] {
// 交換 nums[j] 與 nums[j + 1]
tmp := nums[j]
nums[j] = nums[j+1]
nums[j+1] = tmp
count += 3 // 元素交換包含 3 個單元操作
}
}
}
return count
}
/* 指數階(迴圈實現)*/
func exponential(n int) int {
count, base := 0, 1
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for i := 0; i < n; i++ {
for j := 0; j < base; j++ {
count++
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
/* 指數階(遞迴實現)*/
func expRecur(n int) int {
if n == 1 {
return 1
}
return expRecur(n-1) + expRecur(n-1) + 1
}
/* 對數階(迴圈實現)*/
func logarithmic(n int) int {
count := 0
for n > 1 {
n = n / 2
count++
}
return count
}
/* 對數階(遞迴實現)*/
func logRecur(n int) int {
if n <= 1 {
return 0
}
return logRecur(n/2) + 1
}
/* 線性對數階 */
func linearLogRecur(n int) int {
if n <= 1 {
return 1
}
count := linearLogRecur(n/2) + linearLogRecur(n/2)
for i := 0; i < n; i++ {
count++
}
return count
}
/* 階乘階(遞迴實現) */
func factorialRecur(n int) int {
if n == 0 {
return 1
}
count := 0
// 從 1 個分裂出 n 個
for i := 0; i < n; i++ {
count += factorialRecur(n - 1)
}
return count
}