You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/python/chapter_heap/my_heap.py

138 lines
3.9 KiB

"""
File: my_heap.py
Created Time: 2023-02-23
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import print_heap
class MaxHeap:
"""大頂堆積"""
def __init__(self, nums: list[int]):
"""建構子,根據輸入串列建堆積"""
# 將串列元素原封不動新增進堆積
self.max_heap = nums
# 堆積化除葉節點以外的其他所有節點
for i in range(self.parent(self.size() - 1), -1, -1):
self.sift_down(i)
def left(self, i: int) -> int:
"""獲取左子節點的索引"""
return 2 * i + 1
def right(self, i: int) -> int:
"""獲取右子節點的索引"""
return 2 * i + 2
def parent(self, i: int) -> int:
"""獲取父節點的索引"""
return (i - 1) // 2 # 向下整除
def swap(self, i: int, j: int):
"""交換元素"""
self.max_heap[i], self.max_heap[j] = self.max_heap[j], self.max_heap[i]
def size(self) -> int:
"""獲取堆積大小"""
return len(self.max_heap)
def is_empty(self) -> bool:
"""判斷堆積是否為空"""
return self.size() == 0
def peek(self) -> int:
"""訪問堆積頂元素"""
return self.max_heap[0]
def push(self, val: int):
"""元素入堆積"""
# 新增節點
self.max_heap.append(val)
# 從底至頂堆積化
self.sift_up(self.size() - 1)
def sift_up(self, i: int):
"""從節點 i 開始,從底至頂堆積化"""
while True:
# 獲取節點 i 的父節點
p = self.parent(i)
# 當“越過根節點”或“節點無須修復”時,結束堆積化
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
break
# 交換兩節點
self.swap(i, p)
# 迴圈向上堆積化
i = p
def pop(self) -> int:
"""元素出堆積"""
# 判空處理
if self.is_empty():
raise IndexError("堆積為空")
# 交換根節點與最右葉節點(交換首元素與尾元素)
self.swap(0, self.size() - 1)
# 刪除節點
val = self.max_heap.pop()
# 從頂至底堆積化
self.sift_down(0)
# 返回堆積頂元素
return val
def sift_down(self, i: int):
"""從節點 i 開始,從頂至底堆積化"""
while True:
# 判斷節點 i, l, r 中值最大的節點,記為 ma
l, r, ma = self.left(i), self.right(i), i
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
ma = l
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
ma = r
# 若節點 i 最大或索引 l, r 越界,則無須繼續堆積化,跳出
if ma == i:
break
# 交換兩節點
self.swap(i, ma)
# 迴圈向下堆積化
i = ma
def print(self):
"""列印堆積(二元樹)"""
print_heap(self.max_heap)
"""Driver Code"""
if __name__ == "__main__":
# 初始化大頂堆積
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
print("\n輸入串列並建堆積後")
max_heap.print()
# 獲取堆積頂元素
peek = max_heap.peek()
print(f"\n堆積頂元素為 {peek}")
# 元素入堆積
val = 7
max_heap.push(val)
print(f"\n元素 {val} 入堆積後")
max_heap.print()
# 堆積頂元素出堆積
peek = max_heap.pop()
print(f"\n堆積頂元素 {peek} 出堆積後")
max_heap.print()
# 獲取堆積大小
size = max_heap.size()
print(f"\n堆積元素數量為 {size}")
# 判斷堆積是否為空
is_empty = max_heap.is_empty()
print(f"\n堆積是否為空 {is_empty}")