You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
3.9 KiB
138 lines
3.9 KiB
"""
|
|
File: my_heap.py
|
|
Created Time: 2023-02-23
|
|
Author: krahets (krahets@163.com)
|
|
"""
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent))
|
|
from modules import print_heap
|
|
|
|
|
|
class MaxHeap:
|
|
"""大頂堆積"""
|
|
|
|
def __init__(self, nums: list[int]):
|
|
"""建構子,根據輸入串列建堆積"""
|
|
# 將串列元素原封不動新增進堆積
|
|
self.max_heap = nums
|
|
# 堆積化除葉節點以外的其他所有節點
|
|
for i in range(self.parent(self.size() - 1), -1, -1):
|
|
self.sift_down(i)
|
|
|
|
def left(self, i: int) -> int:
|
|
"""獲取左子節點的索引"""
|
|
return 2 * i + 1
|
|
|
|
def right(self, i: int) -> int:
|
|
"""獲取右子節點的索引"""
|
|
return 2 * i + 2
|
|
|
|
def parent(self, i: int) -> int:
|
|
"""獲取父節點的索引"""
|
|
return (i - 1) // 2 # 向下整除
|
|
|
|
def swap(self, i: int, j: int):
|
|
"""交換元素"""
|
|
self.max_heap[i], self.max_heap[j] = self.max_heap[j], self.max_heap[i]
|
|
|
|
def size(self) -> int:
|
|
"""獲取堆積大小"""
|
|
return len(self.max_heap)
|
|
|
|
def is_empty(self) -> bool:
|
|
"""判斷堆積是否為空"""
|
|
return self.size() == 0
|
|
|
|
def peek(self) -> int:
|
|
"""訪問堆積頂元素"""
|
|
return self.max_heap[0]
|
|
|
|
def push(self, val: int):
|
|
"""元素入堆積"""
|
|
# 新增節點
|
|
self.max_heap.append(val)
|
|
# 從底至頂堆積化
|
|
self.sift_up(self.size() - 1)
|
|
|
|
def sift_up(self, i: int):
|
|
"""從節點 i 開始,從底至頂堆積化"""
|
|
while True:
|
|
# 獲取節點 i 的父節點
|
|
p = self.parent(i)
|
|
# 當“越過根節點”或“節點無須修復”時,結束堆積化
|
|
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
|
|
break
|
|
# 交換兩節點
|
|
self.swap(i, p)
|
|
# 迴圈向上堆積化
|
|
i = p
|
|
|
|
def pop(self) -> int:
|
|
"""元素出堆積"""
|
|
# 判空處理
|
|
if self.is_empty():
|
|
raise IndexError("堆積為空")
|
|
# 交換根節點與最右葉節點(交換首元素與尾元素)
|
|
self.swap(0, self.size() - 1)
|
|
# 刪除節點
|
|
val = self.max_heap.pop()
|
|
# 從頂至底堆積化
|
|
self.sift_down(0)
|
|
# 返回堆積頂元素
|
|
return val
|
|
|
|
def sift_down(self, i: int):
|
|
"""從節點 i 開始,從頂至底堆積化"""
|
|
while True:
|
|
# 判斷節點 i, l, r 中值最大的節點,記為 ma
|
|
l, r, ma = self.left(i), self.right(i), i
|
|
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
|
|
ma = l
|
|
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
|
|
ma = r
|
|
# 若節點 i 最大或索引 l, r 越界,則無須繼續堆積化,跳出
|
|
if ma == i:
|
|
break
|
|
# 交換兩節點
|
|
self.swap(i, ma)
|
|
# 迴圈向下堆積化
|
|
i = ma
|
|
|
|
def print(self):
|
|
"""列印堆積(二元樹)"""
|
|
print_heap(self.max_heap)
|
|
|
|
|
|
"""Driver Code"""
|
|
if __name__ == "__main__":
|
|
# 初始化大頂堆積
|
|
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
|
|
print("\n輸入串列並建堆積後")
|
|
max_heap.print()
|
|
|
|
# 獲取堆積頂元素
|
|
peek = max_heap.peek()
|
|
print(f"\n堆積頂元素為 {peek}")
|
|
|
|
# 元素入堆積
|
|
val = 7
|
|
max_heap.push(val)
|
|
print(f"\n元素 {val} 入堆積後")
|
|
max_heap.print()
|
|
|
|
# 堆積頂元素出堆積
|
|
peek = max_heap.pop()
|
|
print(f"\n堆積頂元素 {peek} 出堆積後")
|
|
max_heap.print()
|
|
|
|
# 獲取堆積大小
|
|
size = max_heap.size()
|
|
print(f"\n堆積元素數量為 {size}")
|
|
|
|
# 判斷堆積是否為空
|
|
is_empty = max_heap.is_empty()
|
|
print(f"\n堆積是否為空 {is_empty}")
|