You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/swift/chapter_computational_compl.../time_complexity.swift

173 lines
4.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
* File: time_complexity.swift
* Created Time: 2022-12-26
* Author: nuomi1 (nuomi1@qq.com)
*/
/* */
func constant(n: Int) -> Int {
var count = 0
let size = 100_000
for _ in 0 ..< size {
count += 1
}
return count
}
/* */
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
/* */
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
//
for _ in nums {
count += 1
}
return count
}
/* */
func quadratic(n: Int) -> Int {
var count = 0
// n
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
/* */
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 //
// [0, i]
for i in nums.indices.dropFirst().reversed() {
// [0, i]
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// nums[j] nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 3
}
}
}
return count
}
/* */
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
/* */
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
/* */
func logarithmic(n: Int) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
/* */
func logRecur(n: Int) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
/* */
func linearLogRecur(n: Int) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in stride(from: 0, to: n, by: 1) {
count += 1
}
return count
}
/* */
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 1 n
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
@main
enum TimeComplexity {
/* Driver Code */
static func main() {
// n
let n = 8
print("輸入資料大小 n = \(n)")
var count = constant(n: n)
print("常數階的操作數量 = \(count)")
count = linear(n: n)
print("線性階的操作數量 = \(count)")
count = arrayTraversal(nums: Array(repeating: 0, count: n))
print("線性階(走訪陣列)的操作數量 = \(count)")
count = quadratic(n: n)
print("平方階的操作數量 = \(count)")
var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
count = bubbleSort(nums: &nums)
print("平方階(泡沫排序)的操作數量 = \(count)")
count = exponential(n: n)
print("指數階(迴圈實現)的操作數量 = \(count)")
count = expRecur(n: n)
print("指數階(遞迴實現)的操作數量 = \(count)")
count = logarithmic(n: n)
print("對數階(迴圈實現)的操作數量 = \(count)")
count = logRecur(n: n)
print("對數階(遞迴實現)的操作數量 = \(count)")
count = linearLogRecur(n: n)
print("線性對數階(遞迴實現)的操作數量 = \(count)")
count = factorialRecur(n: n)
print("階乘階(遞迴實現)的操作數量 = \(count)")
}
}