27 KiB
comments |
---|
true |
11.9 计数排序
「计数排序 counting sort」通过统计元素数量来实现排序,通常应用于整数数组。
11.9.1 简单实现
先来看一个简单的例子。给定一个长度为 n
的数组 nums
,其中的元素都是“非负整数”,计数排序的整体流程如图 11-16 所示。
- 遍历数组,找出数组中的最大数字,记为
m
,然后创建一个长度为m + 1
的辅助数组counter
。 - 借助
counter
统计nums
中各数字的出现次数,其中counter[num]
对应数字num
的出现次数。统计方法很简单,只需遍历nums
(设当前数字为num
),每轮将counter[num]
增加1
即可。 - 由于
counter
的各个索引天然有序,因此相当于所有数字已经被排序好了。接下来,我们遍历counter
,根据各数字的出现次数,将它们按从小到大的顺序填入nums
即可。
图 11-16 计数排序流程
=== "Python"
```python title="counting_sort.py"
def counting_sort_naive(nums: list[int]):
"""计数排序"""
# 简单实现,无法用于排序对象
# 1. 统计数组最大元素 m
m = 0
for num in nums:
m = max(m, num)
# 2. 统计各数字的出现次数
# counter[num] 代表 num 的出现次数
counter = [0] * (m + 1)
for num in nums:
counter[num] += 1
# 3. 遍历 counter ,将各元素填入原数组 nums
i = 0
for num in range(m + 1):
for _ in range(counter[num]):
nums[i] = num
i += 1
```
=== "C++"
```cpp title="counting_sort.cpp"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(vector<int> &nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
vector<int> counter(m + 1, 0);
for (int num : nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "Java"
```java title="counting_sort.java"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
for (int num : nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "C#"
```csharp title="counting_sort.cs"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
foreach (int num in nums) {
m = Math.Max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
foreach (int num in nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "Go"
```go title="counting_sort.go"
/* 计数排序 */
// 简单实现,无法用于排序对象
func countingSortNaive(nums []int) {
// 1. 统计数组最大元素 m
m := 0
for _, num := range nums {
if num > m {
m = num
}
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
counter := make([]int, m+1)
for _, num := range nums {
counter[num]++
}
// 3. 遍历 counter ,将各元素填入原数组 nums
for i, num := 0, 0; num < m+1; num++ {
for j := 0; j < counter[num]; j++ {
nums[i] = num
i++
}
}
}
```
=== "Swift"
```swift title="counting_sort.swift"
/* 计数排序 */
// 简单实现,无法用于排序对象
func countingSortNaive(nums: inout [Int]) {
// 1. 统计数组最大元素 m
let m = nums.max()!
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
var counter = Array(repeating: 0, count: m + 1)
for num in nums {
counter[num] += 1
}
// 3. 遍历 counter ,将各元素填入原数组 nums
var i = 0
for num in stride(from: 0, to: m + 1, by: 1) {
for _ in stride(from: 0, to: counter[num], by: 1) {
nums[i] = num
i += 1
}
}
}
```
=== "JS"
```javascript title="counting_sort.js"
/* 计数排序 */
// 简单实现,无法用于排序对象
function countingSortNaive(nums) {
// 1. 统计数组最大元素 m
let m = 0;
for (const num of nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
const counter = new Array(m + 1).fill(0);
for (const num of nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
let i = 0;
for (let num = 0; num < m + 1; num++) {
for (let j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "TS"
```typescript title="counting_sort.ts"
/* 计数排序 */
// 简单实现,无法用于排序对象
function countingSortNaive(nums: number[]): void {
// 1. 统计数组最大元素 m
let m = 0;
for (const num of nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
const counter: number[] = new Array<number>(m + 1).fill(0);
for (const num of nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
let i = 0;
for (let num = 0; num < m + 1; num++) {
for (let j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "Dart"
```dart title="counting_sort.dart"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(List<int> nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num in nums) {
m = max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
List<int> counter = List.filled(m + 1, 0);
for (int num in nums) {
counter[num]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "Rust"
```rust title="counting_sort.rs"
/* 计数排序 */
// 简单实现,无法用于排序对象
fn counting_sort_naive(nums: &mut [i32]) {
// 1. 统计数组最大元素 m
let m = *nums.into_iter().max().unwrap();
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
let mut counter = vec![0; m as usize + 1];
for &num in &*nums {
counter[num as usize] += 1;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
let mut i = 0;
for num in 0..m + 1 {
for _ in 0..counter[num as usize] {
nums[i] = num;
i += 1;
}
}
}
```
=== "C"
```c title="counting_sort.c"
/* 计数排序 */
// 简单实现,无法用于排序对象
void countingSortNaive(int nums[], int size) {
// 1. 统计数组最大元素 m
int m = 0;
for (int i = 0; i < size; i++) {
if (nums[i] > m) {
m = nums[i];
}
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int *counter = malloc(sizeof(int) * m);
for (int i = 0; i < size; i++) {
counter[nums[i]]++;
}
// 3. 遍历 counter ,将各元素填入原数组 nums
int i = 0;
for (int num = 0; num < m + 1; num++) {
for (int j = 0; j < counter[num]; j++, i++) {
nums[i] = num;
}
}
}
```
=== "Zig"
```zig title="counting_sort.zig"
[class]{}-[func]{countingSortNaive}
```
!!! note "计数排序与桶排序的联系"
从桶排序的角度看,我们可以将计数排序中的计数数组 `counter` 的每个索引视为一个桶,将统计数量的过程看作是将各个元素分配到对应的桶中。本质上,计数排序是桶排序在整型数据下的一个特例。
11.9.2 完整实现
细心的同学可能发现,如果输入数据是对象,上述步骤 3.
就失效了。假设输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。
那么如何才能得到原数据的排序结果呢?我们首先计算 counter
的“前缀和”。顾名思义,索引 i
处的前缀和 prefix[i]
等于数组前 i
个元素之和:
\text{prefix}[i] = \sum_{j=0}^i \text{counter[j]}
前缀和具有明确的意义,prefix[num] - 1
代表元素 num
在结果数组 res
中最后一次出现的索引。这个信息非常关键,因为它告诉我们各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 nums
的每个元素 num
,在每轮迭代中执行以下两步。
- 将
num
填入数组res
的索引prefix[num] - 1
处。 - 令前缀和
prefix[num]
减小1
,从而得到下次放置num
的索引。
遍历完成后,数组 res
中就是排序好的结果,最后使用 res
覆盖原数组 nums
即可。图 11-17 展示了完整的计数排序流程。
图 11-17 计数排序步骤
计数排序的实现代码如下所示。
=== "Python"
```python title="counting_sort.py"
def counting_sort(nums: list[int]):
"""计数排序"""
# 完整实现,可排序对象,并且是稳定排序
# 1. 统计数组最大元素 m
m = max(nums)
# 2. 统计各数字的出现次数
# counter[num] 代表 num 的出现次数
counter = [0] * (m + 1)
for num in nums:
counter[num] += 1
# 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
# 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for i in range(m):
counter[i + 1] += counter[i]
# 4. 倒序遍历 nums ,将各元素填入结果数组 res
# 初始化数组 res 用于记录结果
n = len(nums)
res = [0] * n
for i in range(n - 1, -1, -1):
num = nums[i]
res[counter[num] - 1] = num # 将 num 放置到对应索引处
counter[num] -= 1 # 令前缀和自减 1 ,得到下次放置 num 的索引
# 使用结果数组 res 覆盖原数组 nums
for i in range(n):
nums[i] = res[i]
```
=== "C++"
```cpp title="counting_sort.cpp"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(vector<int> &nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
vector<int> counter(m + 1, 0);
for (int num : nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int n = nums.size();
vector<int> res(n);
for (int i = n - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
nums = res;
}
```
=== "Java"
```java title="counting_sort.java"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num : nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
for (int num : nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int n = nums.length;
int[] res = new int[n];
for (int i = n - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for (int i = 0; i < n; i++) {
nums[i] = res[i];
}
}
```
=== "C#"
```csharp title="counting_sort.cs"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(int[] nums) {
// 1. 统计数组最大元素 m
int m = 0;
foreach (int num in nums) {
m = Math.Max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int[] counter = new int[m + 1];
foreach (int num in nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int n = nums.Length;
int[] res = new int[n];
for (int i = n - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for (int i = 0; i < n; i++) {
nums[i] = res[i];
}
}
```
=== "Go"
```go title="counting_sort.go"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
func countingSort(nums []int) {
// 1. 统计数组最大元素 m
m := 0
for _, num := range nums {
if num > m {
m = num
}
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
counter := make([]int, m+1)
for _, num := range nums {
counter[num]++
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for i := 0; i < m; i++ {
counter[i+1] += counter[i]
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
n := len(nums)
res := make([]int, n)
for i := n - 1; i >= 0; i-- {
num := nums[i]
// 将 num 放置到对应索引处
res[counter[num]-1] = num
// 令前缀和自减 1 ,得到下次放置 num 的索引
counter[num]--
}
// 使用结果数组 res 覆盖原数组 nums
copy(nums, res)
}
```
=== "Swift"
```swift title="counting_sort.swift"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
func countingSort(nums: inout [Int]) {
// 1. 统计数组最大元素 m
let m = nums.max()!
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
var counter = Array(repeating: 0, count: m + 1)
for num in nums {
counter[num] += 1
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for i in stride(from: 0, to: m, by: 1) {
counter[i + 1] += counter[i]
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
var res = Array(repeating: 0, count: nums.count)
for i in stride(from: nums.count - 1, through: 0, by: -1) {
let num = nums[i]
res[counter[num] - 1] = num // 将 num 放置到对应索引处
counter[num] -= 1 // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for i in stride(from: 0, to: nums.count, by: 1) {
nums[i] = res[i]
}
}
```
=== "JS"
```javascript title="counting_sort.js"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
function countingSort(nums) {
// 1. 统计数组最大元素 m
let m = 0;
for (const num of nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
const counter = new Array(m + 1).fill(0);
for (const num of nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (let i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
const n = nums.length;
const res = new Array(n);
for (let i = n - 1; i >= 0; i--) {
const num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for (let i = 0; i < n; i++) {
nums[i] = res[i];
}
}
```
=== "TS"
```typescript title="counting_sort.ts"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
function countingSort(nums: number[]): void {
// 1. 统计数组最大元素 m
let m = 0;
for (const num of nums) {
m = Math.max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
const counter: number[] = new Array<number>(m + 1).fill(0);
for (const num of nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (let i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
const n = nums.length;
const res: number[] = new Array<number>(n);
for (let i = n - 1; i >= 0; i--) {
const num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for (let i = 0; i < n; i++) {
nums[i] = res[i];
}
}
```
=== "Dart"
```dart title="counting_sort.dart"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(List<int> nums) {
// 1. 统计数组最大元素 m
int m = 0;
for (int num in nums) {
m = max(m, num);
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
List<int> counter = List.filled(m + 1, 0);
for (int num in nums) {
counter[num]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int n = nums.length;
List<int> res = List.filled(n, 0);
for (int i = n - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
nums.setAll(0, res);
}
```
=== "Rust"
```rust title="counting_sort.rs"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
fn counting_sort(nums: &mut [i32]) {
// 1. 统计数组最大元素 m
let m = *nums.into_iter().max().unwrap();
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
let mut counter = vec![0; m as usize + 1];
for &num in &*nums {
counter[num as usize] += 1;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for i in 0..m as usize {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
let n = nums.len();
let mut res = vec![0; n];
for i in (0..n).rev() {
let num = nums[i];
res[counter[num as usize] - 1] = num; // 将 num 放置到对应索引处
counter[num as usize] -= 1; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
for i in 0..n {
nums[i] = res[i];
}
}
```
=== "C"
```c title="counting_sort.c"
/* 计数排序 */
// 完整实现,可排序对象,并且是稳定排序
void countingSort(int nums[], int size) {
// 1. 统计数组最大元素 m
int m = 0;
for (int i = 0; i < size; i++) {
if (nums[i] > m) {
m = nums[i];
}
}
// 2. 统计各数字的出现次数
// counter[num] 代表 num 的出现次数
int *counter = malloc(sizeof(int) * m);
for (int i = 0; i < size; i++) {
counter[nums[i]]++;
}
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
for (int i = 0; i < m; i++) {
counter[i + 1] += counter[i];
}
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
// 初始化数组 res 用于记录结果
int *res = malloc(sizeof(int) * size);
for (int i = size - 1; i >= 0; i--) {
int num = nums[i];
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
}
// 使用结果数组 res 覆盖原数组 nums
memcpy(nums, res, size * sizeof(int));
}
```
=== "Zig"
```zig title="counting_sort.zig"
[class]{}-[func]{countingSort}
```
11.9.3 算法特性
- 时间复杂度
O(n + m)
:涉及遍历nums
和遍历counter
,都使用线性时间。一般情况下n \gg m
,时间复杂度趋于O(n)
。 - 空间复杂度
O(n + m)
、非原地排序:借助了长度分别为n
和m
的数组res
和counter
。 - 稳定排序:由于向
res
中填充元素的顺序是“从右向左”的,因此倒序遍历nums
可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历nums
也可以得到正确的排序结果,但结果是非稳定的。
11.9.4 局限性
看到这里,你也许会觉得计数排序非常巧妙,仅通过统计数量就可以实现高效的排序工作。然而,使用计数排序的前置条件相对较为严格。
计数排序只适用于非负整数。若想要将其用于其他类型的数据,需要确保这些数据可以被转换为非负整数,并且在转换过程中不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去即可。
计数排序适用于数据量大但数据范围较小的情况。比如,在上述示例中 m
不能太大,否则会占用过多空间。而当 n \ll m
时,计数排序使用 O(m)
时间,可能比 O(n \log n)
的排序算法还要慢。