You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
10 KiB
10 KiB
comments |
---|
true |
11.4 插入排序
「插入排序 insertion sort」是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。
具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置。
图 11-6 展示了数组插入元素的操作流程。设基准元素为 base
,我们需要将从目标索引到 base
之间的所有元素向右移动一位,然后再将 base
赋值给目标索引。
图 11-6 单次插入操作
11.4.1 算法流程
插入排序的整体流程如图 11-7 所示。
- 初始状态下,数组的第 1 个元素已完成排序。
- 选取数组的第 2 个元素作为
base
,将其插入到正确位置后,数组的前 2 个元素已排序。 - 选取第 3 个元素作为
base
,将其插入到正确位置后,数组的前 3 个元素已排序。 - 以此类推,在最后一轮中,选取最后一个元素作为
base
,将其插入到正确位置后,所有元素均已排序。
图 11-7 插入排序流程
=== "Python"
```python title="insertion_sort.py"
def insertion_sort(nums: list[int]):
"""插入排序"""
# 外循环:已排序区间为 [0, i-1]
for i in range(1, len(nums)):
base = nums[i]
j = i - 1
# 内循环:将 base 插入到已排序区间 [0, i-1] 中的正确位置
while j >= 0 and nums[j] > base:
nums[j + 1] = nums[j] # 将 nums[j] 向右移动一位
j -= 1
nums[j + 1] = base # 将 base 赋值到正确位置
```
=== "C++"
```cpp title="insertion_sort.cpp"
/* 插入排序 */
void insertionSort(vector<int> &nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < nums.size(); i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
```
=== "Java"
```java title="insertion_sort.java"
/* 插入排序 */
void insertionSort(int[] nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < nums.length; i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
```
=== "C#"
```csharp title="insertion_sort.cs"
/* 插入排序 */
void insertionSort(int[] nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < nums.Length; i++) {
int bas = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > bas) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = bas; // 将 base 赋值到正确位置
}
}
```
=== "Go"
```go title="insertion_sort.go"
/* 插入排序 */
func insertionSort(nums []int) {
// 外循环:未排序区间为 [0, i]
for i := 1; i < len(nums); i++ {
base := nums[i]
j := i - 1
// 内循环:将 base 插入到已排序部分的正确位置
for j >= 0 && nums[j] > base {
nums[j+1] = nums[j] // 将 nums[j] 向右移动一位
j--
}
nums[j+1] = base // 将 base 赋值到正确位置
}
}
```
=== "Swift"
```swift title="insertion_sort.swift"
/* 插入排序 */
func insertionSort(nums: inout [Int]) {
// 外循环:已排序元素数量为 1, 2, ..., n
for i in stride(from: 1, to: nums.count, by: 1) {
let base = nums[i]
var j = i - 1
// 内循环:将 base 插入到已排序部分的正确位置
while j >= 0, nums[j] > base {
nums[j + 1] = nums[j] // 将 nums[j] 向右移动一位
j -= 1
}
nums[j + 1] = base // 将 base 赋值到正确位置
}
}
```
=== "JS"
```javascript title="insertion_sort.js"
/* 插入排序 */
function insertionSort(nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (let i = 1; i < nums.length; i++) {
let base = nums[i],
j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
```
=== "TS"
```typescript title="insertion_sort.ts"
/* 插入排序 */
function insertionSort(nums: number[]): void {
// 外循环:已排序元素数量为 1, 2, ..., n
for (let i = 1; i < nums.length; i++) {
const base = nums[i];
let j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
```
=== "Dart"
```dart title="insertion_sort.dart"
/* 插入排序 */
void insertionSort(List<int> nums) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < nums.length; i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 将 base 赋值到正确位置
}
}
```
=== "Rust"
```rust title="insertion_sort.rs"
/* 插入排序 */
fn insertion_sort(nums: &mut [i32]) {
// 外循环:已排序元素数量为 1, 2, ..., n
for i in 1..nums.len() {
let (base, mut j) = (nums[i], (i - 1) as i32);
// 内循环:将 base 插入到已排序部分的正确位置
while j >= 0 && nums[j as usize] > base {
nums[(j + 1) as usize] = nums[j as usize]; // 将 nums[j] 向右移动一位
j -= 1;
}
nums[(j + 1) as usize] = base; // 将 base 赋值到正确位置
}
}
```
=== "C"
```c title="insertion_sort.c"
/* 插入排序 */
void insertionSort(int nums[], int size) {
// 外循环:已排序元素数量为 1, 2, ..., n
for (int i = 1; i < size; i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 0 && nums[j] > base) {
// 将 nums[j] 向右移动一位
nums[j + 1] = nums[j];
j--;
}
// 将 base 赋值到正确位置
nums[j + 1] = base;
}
}
```
=== "Zig"
```zig title="insertion_sort.zig"
// 插入排序
fn insertionSort(nums: []i32) void {
// 外循环:已排序元素数量为 1, 2, ..., n
var i: usize = 1;
while (i < nums.len) : (i += 1) {
var base = nums[i];
var j: usize = i;
// 内循环:将 base 插入到已排序部分的正确位置
while (j >= 1 and nums[j - 1] > base) : (j -= 1) {
nums[j] = nums[j - 1]; // 将 nums[j] 向右移动一位
}
nums[j] = base; // 将 base 赋值到正确位置
}
}
```
11.4.2 算法特性
- 时间复杂度
O(n^2)
、自适应排序:最差情况下,每次插入操作分别需要循环n - 1
、n-2
、\dots
、2
、1
次,求和得到(n - 1) n / 2
,因此时间复杂度为O(n^2)
。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度O(n)
。 - 空间复杂度
O(1)
、原地排序:指针i
和j
使用常数大小的额外空间。 - 稳定排序:在插入操作过程中,我们会将元素插入到相等元素的右侧,不会改变它们的顺序。
11.4.3 插入排序优势
插入排序的时间复杂度为 O(n^2)
,而我们即将学习的快速排序的时间复杂度为 O(n \log n)
。尽管插入排序的时间复杂度相比快速排序更高,但在数据量较小的情况下,插入排序通常更快。
这个结论与线性查找和二分查找的适用情况的结论类似。快速排序这类 O(n \log n)
的算法属于基于分治的排序算法,往往包含更多单元计算操作。而在数据量较小时,n^2
和 n \log n
的数值比较接近,复杂度不占主导作用;每轮中的单元操作数量起到决定性因素。
实际上,许多编程语言(例如 Java)的内置排序函数都采用了插入排序,大致思路为:对于长数组,采用基于分治的排序算法,例如快速排序;对于短数组,直接使用插入排序。
虽然冒泡排序、选择排序和插入排序的时间复杂度都为 O(n^2)
,但在实际情况中,插入排序的使用频率显著高于冒泡排序和选择排序,主要有以下原因。
- 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
- 选择排序在任何情况下的时间复杂度都为
O(n^2)
。如果给定一组部分有序的数据,插入排序通常比选择排序效率更高。 - 选择排序不稳定,无法应用于多级排序。