You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/python/chapter_dynamic_programming/edit_distance.py

124 lines
4.1 KiB

"""
File: edit_distancde.py
Created Time: 2023-07-04
Author: Krahets (krahets@163.com)
"""
def edit_distance_dfs(s: str, t: str, i: int, j: int) -> int:
"""编辑距离:暴力搜索"""
# 若 s 和 t 都为空,则返回 0
if i == 0 and j == 0:
return 0
# 若 s 为空,则返回 t 长度
if i == 0:
return j
# 若 t 为空,则返回 s 长度
if j == 0:
return i
# 若两字符相等,则直接跳过此两字符
if s[i - 1] == t[j - 1]:
return edit_distance_dfs(s, t, i - 1, j - 1)
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert = edit_distance_dfs(s, t, i, j - 1)
delete = edit_distance_dfs(s, t, i - 1, j)
replace = edit_distance_dfs(s, t, i - 1, j - 1)
# 返回最少编辑步数
return min(insert, delete, replace) + 1
def edit_distance_dfs_mem(s: str, t: str, mem: list[list[int]], i: int, j: int) -> int:
"""编辑距离:记忆化搜索"""
# 若 s 和 t 都为空,则返回 0
if i == 0 and j == 0:
return 0
# 若 s 为空,则返回 t 长度
if i == 0:
return j
# 若 t 为空,则返回 s 长度
if j == 0:
return i
# 若已有记录,则直接返回之
if mem[i][j] != -1:
return mem[i][j]
# 若两字符相等,则直接跳过此两字符
if s[i - 1] == t[j - 1]:
return edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert = edit_distance_dfs_mem(s, t, mem, i, j - 1)
delete = edit_distance_dfs_mem(s, t, mem, i - 1, j)
replace = edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 记录并返回最少编辑步数
mem[i][j] = min(insert, delete, replace) + 1
return mem[i][j]
def edit_distance_dp(s: str, t: str) -> int:
"""编辑距离:动态规划"""
n, m = len(s), len(t)
dp = [[0] * (m + 1) for _ in range(n + 1)]
# 状态转移:首行首列
for i in range(1, n + 1):
dp[i][0] = i
for j in range(1, m + 1):
dp[0][j] = j
# 状态转移:其余行列
for i in range(1, n + 1):
for j in range(1, m + 1):
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1]
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[n][m]
def edit_distance_dp_comp(s: str, t: str) -> int:
"""编辑距离:状态压缩后的动态规划"""
n, m = len(s), len(t)
dp = [0] * (m + 1)
# 状态转移:首行
for j in range(1, m + 1):
dp[j] = j
# 状态转移:其余行
for i in range(1, n + 1):
# 状态转移:首列
leftup = dp[0] # 暂存 dp[i-1, j-1]
dp[0] += 1
# 状态转移:其余列
for j in range(1, m + 1):
temp = dp[j]
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[j] = leftup
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
return dp[m]
"""Driver Code"""
if __name__ == "__main__":
s = "bag"
t = "pack"
n, m = len(s), len(t)
# 暴力搜索
res = edit_distance_dfs(s, t, n, m)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 记忆化搜索
mem = [[-1] * (m + 1) for _ in range(n + 1)]
res = edit_distance_dfs_mem(s, t, mem, n, m)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 动态规划
res = edit_distance_dp(s, t)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 状态压缩后的动态规划
res = edit_distance_dp_comp(s, t)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")