You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/kotlin/chapter_dynamic_programming/min_path_sum.kt

138 lines
3.7 KiB

/**
* File: min_path_sum.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_dynamic_programming
import java.util.*
import kotlin.math.min
/* 最小路径和:暴力搜索 */
fun minPathSumDFS(
grid: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
val up = minPathSumDFS(grid, i - 1, j)
val left = minPathSumDFS(grid, i, j - 1)
// 返回从左上角到 (i, j) 的最小路径代价
return (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
}
/* 最小路径和:记忆化搜索 */
fun minPathSumDFSMem(
grid: Array<Array<Int>>,
mem: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 若已有记录,则直接返回
if (mem[i][j] != -1) {
return mem[i][j]
}
// 左边和上边单元格的最小路径代价
val up = minPathSumDFSMem(grid, mem, i - 1, j)
val left = minPathSumDFSMem(grid, mem, i, j - 1)
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
return mem[i][j]
}
/* 最小路径和:动态规划 */
fun minPathSumDP(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = Array(n) { IntArray(m) }
dp[0][0] = grid[0][0]
// 状态转移:首行
for (j in 1..<m) {
dp[0][j] = dp[0][j - 1] + grid[0][j]
}
// 状态转移:首列
for (i in 1..<n) {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
// 状态转移:其余行和列
for (i in 1..<n) {
for (j in 1..<m) {
dp[i][j] =
(min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[n - 1][m - 1]
}
/* 最小路径和:空间优化后的动态规划 */
fun minPathSumDPComp(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = IntArray(m)
// 状态转移:首行
dp[0] = grid[0][0]
for (j in 1..<m) {
dp[j] = dp[j - 1] + grid[0][j]
}
// 状态转移:其余行
for (i in 1..<n) {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0]
// 状态转移:其余列
for (j in 1..<m) {
dp[j] = (min(dp[j - 1].toDouble(), dp[j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[m - 1]
}
/* Driver Code */
fun main() {
val grid = arrayOf(
arrayOf(1, 3, 1, 5),
arrayOf(2, 2, 4, 2),
arrayOf(5, 3, 2, 1),
arrayOf(4, 3, 5, 2)
)
val n = grid.size
val m = grid[0].size
// 暴力搜索
var res = minPathSumDFS(grid, n - 1, m - 1)
println("从左上角到右下角的最小路径和为 $res")
// 记忆化搜索
val mem = Array(n) { Array(m) { 0 } }
for (row in mem) {
Arrays.fill(row, -1)
}
res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
println("从左上角到右下角的最小路径和为 $res")
// 动态规划
res = minPathSumDP(grid)
println("从左上角到右下角的最小路径和为 $res")
// 空间优化后的动态规划
res = minPathSumDPComp(grid)
println("从左上角到右下角的最小路径和为 $res")
}