You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_dynamic_programming/knapsack_problem.md

11 KiB

0-1 背包问题

背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。

在本节中,我们先来学习基础的的 0-1 背包问题。

!!! question

给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$ 、价值为 $val[i-1]$ ,现在有个容量为 $cap$ 的背包,每个物品只能选择一次,问在不超过背包容量下背包中物品的最大价值。

请注意,物品编号 $i$ 从 $1$ 开始计数,数组索引从 $0$ 开始计数,因此物品 $i$ 对应重量 $wgt[i-1]$ 和价值 $val[i-1]$ 。

下图给出了一个 0-1 背包的示例数据,背包内的最大价值为 220

0-1 背包的示例数据

我们可以将 0-1 背包问题看作是一个由 n 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。此外,该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。我们接下来尝试求解它。

第一步:思考每轮的决策,定义状态,从而得到 dp

在 0-1 背包问题中,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 i 和剩余背包容量 c ,记为 [i, c]

状态 [i, c] 对应的子问题为:i 个物品在剩余容量为 c 的背包中的最大价值,记为 dp[i, c]

需要求解的是 dp[n, cap] ,因此需要一个尺寸为 (n+1) \times (cap+1) 的二维 dp 表。

第二步:找出最优子结构,进而推导出状态转移方程

当我们做出物品 i 的决策后,剩余的是前 i-1 个物品的决策。因此,状态转移分为两种情况:

  • 不放入物品 i :背包容量不变,状态转移至 [i-1, c]
  • 放入物品 i :背包容量减小 wgt[i-1] ,价值增加 val[i-1] ,状态转移至 [i-1, c-wgt[i-1]]

上述的状态转移向我们揭示了本题的最优子结构:最大价值 dp[i, c] 等于不放入物品 i 和放入物品 i 两种方案中的价值更大的那一个。由此可推出状态转移方程:


dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])

需要注意的是,若当前物品重量 wgt[i - 1] 超出剩余背包容量 c ,则只能选择不放入背包。

第三步:确定边界条件和状态转移顺序

当无物品或无剩余背包容量时最大价值为 0 ,即所有 dp[i, 0]dp[0, c] 都等于 0

当前状态 [i, c] 从上方的状态 [i-1, c] 和左上方的状态 [i-1, c-wgt[i-1]] 转移而来,因此通过两层循环正序遍历整个 dp 表即可。

!!! tip

完成以上三步后,我们可以直接实现从底至顶的动态规划解法。而为了展示本题包含的重叠子问题,本文也同时给出从顶至底的暴力搜索和记忆化搜索解法。

方法一:暴力搜索

搜索代码包含以下要素:

  • 递归参数:状态 [i, c] 返回值:子问题的解 dp[i, c]
  • 终止条件:当物品编号越界 i = 0 或背包剩余容量为 0 时,终止递归并返回价值 0
  • 剪枝:若当前物品重量超出背包剩余容量,则只能不放入背包。

=== "Java"

```java title="knapsack.java"
[class]{knapsack}-[func]{knapsackDFS}
```

=== "C++"

```cpp title="knapsack.cpp"
[class]{}-[func]{knapsackDFS}
```

=== "Python"

```python title="knapsack.py"
[class]{}-[func]{knapsack_dfs}
```

=== "Go"

```go title="knapsack.go"
[class]{}-[func]{knapsackDFS}
```

=== "JavaScript"

```javascript title="knapsack.js"
[class]{}-[func]{knapsackDFS}
```

=== "TypeScript"

```typescript title="knapsack.ts"
[class]{}-[func]{knapsackDFS}
```

=== "C"

```c title="knapsack.c"
[class]{}-[func]{knapsackDFS}
```

=== "C#"

```csharp title="knapsack.cs"
[class]{knapsack}-[func]{knapsackDFS}
```

=== "Swift"

```swift title="knapsack.swift"
[class]{}-[func]{knapsackDFS}
```

=== "Zig"

```zig title="knapsack.zig"
[class]{}-[func]{knapsackDFS}
```

=== "Dart"

```dart title="knapsack.dart"
[class]{}-[func]{knapsackDFS}
```

如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此最差时间复杂度为 O(2^n)

观察递归树,容易发现其中存在一些「重叠子问题」,例如 dp[1, 10] 等。而当物品较多、背包容量较大,尤其是当相同重量的物品较多时,重叠子问题的数量将会大幅增多。

0-1 背包的暴力搜索递归树

方法二:记忆化搜索

为了防止重复求解重叠子问题,我们借助一个记忆列表 mem 来记录子问题的解,其中 mem[i][c] 对应解 dp[i, c]

=== "Java"

```java title="knapsack.java"
[class]{knapsack}-[func]{knapsackDFSMem}
```

=== "C++"

```cpp title="knapsack.cpp"
[class]{}-[func]{knapsackDFSMem}
```

=== "Python"

```python title="knapsack.py"
[class]{}-[func]{knapsack_dfs_mem}
```

=== "Go"

```go title="knapsack.go"
[class]{}-[func]{knapsackDFSMem}
```

=== "JavaScript"

```javascript title="knapsack.js"
[class]{}-[func]{knapsackDFSMem}
```

=== "TypeScript"

```typescript title="knapsack.ts"
[class]{}-[func]{knapsackDFSMem}
```

=== "C"

```c title="knapsack.c"
[class]{}-[func]{knapsackDFSMem}
```

=== "C#"

```csharp title="knapsack.cs"
[class]{knapsack}-[func]{knapsackDFSMem}
```

=== "Swift"

```swift title="knapsack.swift"
[class]{}-[func]{knapsackDFSMem}
```

=== "Zig"

```zig title="knapsack.zig"
[class]{}-[func]{knapsackDFSMem}
```

=== "Dart"

```dart title="knapsack.dart"
[class]{}-[func]{knapsackDFSMem}
```

引入记忆化之后,所有子问题都只被计算一次,因此时间复杂度取决于子问题数量,也就是 O(n \times cap)

0-1 背包的记忆化搜索递归树

方法三:动态规划

动态规划解法本质上就是在状态转移中填充 dp 表的过程,代码如下所示。

=== "Java"

```java title="knapsack.java"
[class]{knapsack}-[func]{knapsackDP}
```

=== "C++"

```cpp title="knapsack.cpp"
[class]{}-[func]{knapsackDP}
```

=== "Python"

```python title="knapsack.py"
[class]{}-[func]{knapsack_dp}
```

=== "Go"

```go title="knapsack.go"
[class]{}-[func]{knapsackDP}
```

=== "JavaScript"

```javascript title="knapsack.js"
[class]{}-[func]{knapsackDP}
```

=== "TypeScript"

```typescript title="knapsack.ts"
[class]{}-[func]{knapsackDP}
```

=== "C"

```c title="knapsack.c"
[class]{}-[func]{knapsackDP}
```

=== "C#"

```csharp title="knapsack.cs"
[class]{knapsack}-[func]{knapsackDP}
```

=== "Swift"

```swift title="knapsack.swift"
[class]{}-[func]{knapsackDP}
```

=== "Zig"

```zig title="knapsack.zig"
[class]{}-[func]{knapsackDP}
```

=== "Dart"

```dart title="knapsack.dart"
[class]{}-[func]{knapsackDP}
```

如下图所示,时间复杂度由数组 dp 大小决定,为 O(n \times cap)

=== "<1>" 0-1 背包的动态规划过程

=== "<2>" knapsack_dp_step2

=== "<3>" knapsack_dp_step3

=== "<4>" knapsack_dp_step4

=== "<5>" knapsack_dp_step5

=== "<6>" knapsack_dp_step6

=== "<7>" knapsack_dp_step7

=== "<8>" knapsack_dp_step8

=== "<9>" knapsack_dp_step9

=== "<10>" knapsack_dp_step10

=== "<11>" knapsack_dp_step11

=== "<12>" knapsack_dp_step12

=== "<13>" knapsack_dp_step13

=== "<14>" knapsack_dp_step14

最后考虑状态压缩。以上代码中的数组 dp 占用 O(n \times cap) 空间。由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 O(n^2) 将低至 O(n) 。代码省略,有兴趣的同学可以自行实现。

那么,我们是否可以仅用一个数组实现状态压缩呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当遍历到第 i 行时,该数组存储的仍然是第 i-1 行的状态,为了避免左方区域的格子在状态转移中被覆盖,应该采取倒序遍历

以下动画展示了在单个数组下从第 i=1 行转换至第 i=2 行的过程。建议你思考一下正序遍历和倒序遍历的区别。

=== "<1>" 0-1 背包的状态压缩后的动态规划过程

=== "<2>" knapsack_dp_comp_step2

=== "<3>" knapsack_dp_comp_step3

=== "<4>" knapsack_dp_comp_step4

=== "<5>" knapsack_dp_comp_step5

=== "<6>" knapsack_dp_comp_step6

如以下代码所示,我们仅需将数组 dp 的第一维 i 直接删除,并且将内循环修改为倒序遍历即可。

=== "Java"

```java title="knapsack.java"
[class]{knapsack}-[func]{knapsackDPComp}
```

=== "C++"

```cpp title="knapsack.cpp"
[class]{}-[func]{knapsackDPComp}
```

=== "Python"

```python title="knapsack.py"
[class]{}-[func]{knapsack_dp_comp}
```

=== "Go"

```go title="knapsack.go"
[class]{}-[func]{knapsackDPComp}
```

=== "JavaScript"

```javascript title="knapsack.js"
[class]{}-[func]{knapsackDPComp}
```

=== "TypeScript"

```typescript title="knapsack.ts"
[class]{}-[func]{knapsackDPComp}
```

=== "C"

```c title="knapsack.c"
[class]{}-[func]{knapsackDPComp}
```

=== "C#"

```csharp title="knapsack.cs"
[class]{knapsack}-[func]{knapsackDPComp}
```

=== "Swift"

```swift title="knapsack.swift"
[class]{}-[func]{knapsackDPComp}
```

=== "Zig"

```zig title="knapsack.zig"
[class]{}-[func]{knapsackDPComp}
```

=== "Dart"

```dart title="knapsack.dart"
[class]{}-[func]{knapsackDPComp}
```