|
|
# 0-1 背包问题
|
|
|
|
|
|
背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。
|
|
|
|
|
|
在本节中,我们先来学习基础的的 0-1 背包问题。
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$ 、价值为 $val[i-1]$ ,现在有个容量为 $cap$ 的背包,每个物品只能选择一次,问在不超过背包容量下背包中物品的最大价值。
|
|
|
|
|
|
请注意,物品编号 $i$ 从 $1$ 开始计数,数组索引从 $0$ 开始计数,因此物品 $i$ 对应重量 $wgt[i-1]$ 和价值 $val[i-1]$ 。
|
|
|
|
|
|
下图给出了一个 0-1 背包的示例数据,背包内的最大价值为 $220$ 。
|
|
|
|
|
|
![0-1 背包的示例数据](knapsack_problem.assets/knapsack_example.png)
|
|
|
|
|
|
我们可以将 0-1 背包问题看作是一个由 $n$ 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。此外,该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。我们接下来尝试求解它。
|
|
|
|
|
|
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
|
|
|
|
|
|
在 0-1 背包问题中,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 $i$ 和剩余背包容量 $c$ ,记为 $[i, c]$ 。
|
|
|
|
|
|
状态 $[i, c]$ 对应的子问题为:**前 $i$ 个物品在剩余容量为 $c$ 的背包中的最大价值**,记为 $dp[i, c]$ 。
|
|
|
|
|
|
需要求解的是 $dp[n, cap]$ ,因此需要一个尺寸为 $(n+1) \times (cap+1)$ 的二维 $dp$ 表。
|
|
|
|
|
|
**第二步:找出最优子结构,进而推导出状态转移方程**
|
|
|
|
|
|
当我们做出物品 $i$ 的决策后,剩余的是前 $i-1$ 个物品的决策。因此,状态转移分为两种情况:
|
|
|
|
|
|
- **不放入物品 $i$** :背包容量不变,状态转移至 $[i-1, c]$ ;
|
|
|
- **放入物品 $i$** :背包容量减小 $wgt[i-1]$ ,价值增加 $val[i-1]$ ,状态转移至 $[i-1, c-wgt[i-1]]$ ;
|
|
|
|
|
|
上述的状态转移向我们揭示了本题的最优子结构:**最大价值 $dp[i, c]$ 等于不放入物品 $i$ 和放入物品 $i$ 两种方案中的价值更大的那一个**。由此可推出状态转移方程:
|
|
|
|
|
|
$$
|
|
|
dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|
|
$$
|
|
|
|
|
|
需要注意的是,若当前物品重量 $wgt[i - 1]$ 超出剩余背包容量 $c$ ,则只能选择不放入背包。
|
|
|
|
|
|
**第三步:确定边界条件和状态转移顺序**
|
|
|
|
|
|
当无物品或无剩余背包容量时最大价值为 $0$ ,即所有 $dp[i, 0]$ 和 $dp[0, c]$ 都等于 $0$ 。
|
|
|
|
|
|
当前状态 $[i, c]$ 从上方的状态 $[i-1, c]$ 和左上方的状态 $[i-1, c-wgt[i-1]]$ 转移而来,因此通过两层循环正序遍历整个 $dp$ 表即可。
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
完成以上三步后,我们可以直接实现从底至顶的动态规划解法。而为了展示本题包含的重叠子问题,本文也同时给出从顶至底的暴力搜索和记忆化搜索解法。
|
|
|
|
|
|
## 方法一:暴力搜索
|
|
|
|
|
|
搜索代码包含以下要素:
|
|
|
|
|
|
- **递归参数**:状态 $[i, c]$ ;**返回值**:子问题的解 $dp[i, c]$ 。
|
|
|
- **终止条件**:当物品编号越界 $i = 0$ 或背包剩余容量为 $0$ 时,终止递归并返回价值 $0$ 。
|
|
|
- **剪枝**:若当前物品重量超出背包剩余容量,则只能不放入背包。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="knapsack.java"
|
|
|
[class]{knapsack}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="knapsack.cpp"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="knapsack.py"
|
|
|
[class]{}-[func]{knapsack_dfs}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="knapsack.go"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="knapsack.js"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="knapsack.ts"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="knapsack.c"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="knapsack.cs"
|
|
|
[class]{knapsack}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="knapsack.swift"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="knapsack.zig"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="knapsack.dart"
|
|
|
[class]{}-[func]{knapsackDFS}
|
|
|
```
|
|
|
|
|
|
如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此最差时间复杂度为 $O(2^n)$ 。
|
|
|
|
|
|
观察递归树,容易发现其中存在一些「重叠子问题」,例如 $dp[1, 10]$ 等。而当物品较多、背包容量较大,尤其是当相同重量的物品较多时,重叠子问题的数量将会大幅增多。
|
|
|
|
|
|
![0-1 背包的暴力搜索递归树](knapsack_problem.assets/knapsack_dfs.png)
|
|
|
|
|
|
## 方法二:记忆化搜索
|
|
|
|
|
|
为了防止重复求解重叠子问题,我们借助一个记忆列表 `mem` 来记录子问题的解,其中 `mem[i][c]` 对应解 $dp[i, c]$ 。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="knapsack.java"
|
|
|
[class]{knapsack}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="knapsack.cpp"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="knapsack.py"
|
|
|
[class]{}-[func]{knapsack_dfs_mem}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="knapsack.go"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="knapsack.js"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="knapsack.ts"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="knapsack.c"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="knapsack.cs"
|
|
|
[class]{knapsack}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="knapsack.swift"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="knapsack.zig"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="knapsack.dart"
|
|
|
[class]{}-[func]{knapsackDFSMem}
|
|
|
```
|
|
|
|
|
|
引入记忆化之后,所有子问题都只被计算一次,**因此时间复杂度取决于子问题数量**,也就是 $O(n \times cap)$ 。
|
|
|
|
|
|
![0-1 背包的记忆化搜索递归树](knapsack_problem.assets/knapsack_dfs_mem.png)
|
|
|
|
|
|
## 方法三:动态规划
|
|
|
|
|
|
动态规划解法本质上就是在状态转移中填充 $dp$ 表的过程,代码如下所示。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="knapsack.java"
|
|
|
[class]{knapsack}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="knapsack.cpp"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="knapsack.py"
|
|
|
[class]{}-[func]{knapsack_dp}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="knapsack.go"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="knapsack.js"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="knapsack.ts"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="knapsack.c"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="knapsack.cs"
|
|
|
[class]{knapsack}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="knapsack.swift"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="knapsack.zig"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="knapsack.dart"
|
|
|
[class]{}-[func]{knapsackDP}
|
|
|
```
|
|
|
|
|
|
如下图所示,时间复杂度由数组 `dp` 大小决定,为 $O(n \times cap)$ 。
|
|
|
|
|
|
=== "<1>"
|
|
|
![0-1 背包的动态规划过程](knapsack_problem.assets/knapsack_dp_step1.png)
|
|
|
|
|
|
=== "<2>"
|
|
|
![knapsack_dp_step2](knapsack_problem.assets/knapsack_dp_step2.png)
|
|
|
|
|
|
=== "<3>"
|
|
|
![knapsack_dp_step3](knapsack_problem.assets/knapsack_dp_step3.png)
|
|
|
|
|
|
=== "<4>"
|
|
|
![knapsack_dp_step4](knapsack_problem.assets/knapsack_dp_step4.png)
|
|
|
|
|
|
=== "<5>"
|
|
|
![knapsack_dp_step5](knapsack_problem.assets/knapsack_dp_step5.png)
|
|
|
|
|
|
=== "<6>"
|
|
|
![knapsack_dp_step6](knapsack_problem.assets/knapsack_dp_step6.png)
|
|
|
|
|
|
=== "<7>"
|
|
|
![knapsack_dp_step7](knapsack_problem.assets/knapsack_dp_step7.png)
|
|
|
|
|
|
=== "<8>"
|
|
|
![knapsack_dp_step8](knapsack_problem.assets/knapsack_dp_step8.png)
|
|
|
|
|
|
=== "<9>"
|
|
|
![knapsack_dp_step9](knapsack_problem.assets/knapsack_dp_step9.png)
|
|
|
|
|
|
=== "<10>"
|
|
|
![knapsack_dp_step10](knapsack_problem.assets/knapsack_dp_step10.png)
|
|
|
|
|
|
=== "<11>"
|
|
|
![knapsack_dp_step11](knapsack_problem.assets/knapsack_dp_step11.png)
|
|
|
|
|
|
=== "<12>"
|
|
|
![knapsack_dp_step12](knapsack_problem.assets/knapsack_dp_step12.png)
|
|
|
|
|
|
=== "<13>"
|
|
|
![knapsack_dp_step13](knapsack_problem.assets/knapsack_dp_step13.png)
|
|
|
|
|
|
=== "<14>"
|
|
|
![knapsack_dp_step14](knapsack_problem.assets/knapsack_dp_step14.png)
|
|
|
|
|
|
**最后考虑状态压缩**。以上代码中的数组 `dp` 占用 $O(n \times cap)$ 空间。由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 $O(n^2)$ 将低至 $O(n)$ 。代码省略,有兴趣的同学可以自行实现。
|
|
|
|
|
|
那么,我们是否可以仅用一个数组实现状态压缩呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当遍历到第 $i$ 行时,该数组存储的仍然是第 $i-1$ 行的状态,**为了避免左方区域的格子在状态转移中被覆盖,应该采取倒序遍历**。
|
|
|
|
|
|
以下动画展示了在单个数组下从第 $i=1$ 行转换至第 $i=2$ 行的过程。建议你思考一下正序遍历和倒序遍历的区别。
|
|
|
|
|
|
=== "<1>"
|
|
|
![0-1 背包的状态压缩后的动态规划过程](knapsack_problem.assets/knapsack_dp_comp_step1.png)
|
|
|
|
|
|
=== "<2>"
|
|
|
![knapsack_dp_comp_step2](knapsack_problem.assets/knapsack_dp_comp_step2.png)
|
|
|
|
|
|
=== "<3>"
|
|
|
![knapsack_dp_comp_step3](knapsack_problem.assets/knapsack_dp_comp_step3.png)
|
|
|
|
|
|
=== "<4>"
|
|
|
![knapsack_dp_comp_step4](knapsack_problem.assets/knapsack_dp_comp_step4.png)
|
|
|
|
|
|
=== "<5>"
|
|
|
![knapsack_dp_comp_step5](knapsack_problem.assets/knapsack_dp_comp_step5.png)
|
|
|
|
|
|
=== "<6>"
|
|
|
![knapsack_dp_comp_step6](knapsack_problem.assets/knapsack_dp_comp_step6.png)
|
|
|
|
|
|
如以下代码所示,我们仅需将数组 `dp` 的第一维 $i$ 直接删除,并且将内循环修改为倒序遍历即可。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="knapsack.java"
|
|
|
[class]{knapsack}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="knapsack.cpp"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="knapsack.py"
|
|
|
[class]{}-[func]{knapsack_dp_comp}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="knapsack.go"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="knapsack.js"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="knapsack.ts"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="knapsack.c"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="knapsack.cs"
|
|
|
[class]{knapsack}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="knapsack.swift"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="knapsack.zig"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="knapsack.dart"
|
|
|
[class]{}-[func]{knapsackDPComp}
|
|
|
```
|